《高等数学 下》

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

第八章 多元函数微分法及其应用1

第一节 多元函数的基本概念1

一、区域1

二、多元函数概念3

三、多元函数的极限6

四、多元函数的连续性9

习题8—112

第二节 偏导数13

一、偏导数的定义及其计算法13

二、高阶偏导数18

习题8—220

第三节 全微分及其应用21

一、全微分的定义21

二、全微分在近似计算中的应用25

习题8—328

第四节 多元复合函数的求导法则20

习题8—436

第五节 隐函数的求导公式37

一、一个方程的情形37

二、方程组的情形39

习题8—543

第六节 微分法在几何上的应用44

一、空间曲线的切线与法平面44

二、曲面的切平面与法线49

习题8—652

第七节 方向导数与梯度53

一、方向导数53

二、梯度56

习题8—760

第八节 多元函数的极值及其求法61

一、多元函数的极值及最大值、最小值61

二、条件极值 拉格朗日乘数法67

习题8—870

第九节 二元函数的泰勒公式71

一、二元函数的泰勒公式71

二、极值充分条件的证明75

习题8—978

第十节 最小二乘法78

习题8—1084

总习题八84

第九章 重积分87

第一节 二重积分的概念与性质87

一、二重积分的概念87

二、二重积分的性质91

习题9—193

第二节 二重积分的计算法94

一、利用直角坐标计算二重积分94

习题9—2(1)103

二、利用极坐标计算二重积分104

习题9—2(2)110

三、二重积分的换元法112

习题9—2(3)118

第三节 二重积分的应用119

一、曲面的面积120

二、平面薄片的重心123

三、平面薄片的转动惯量125

四、平面薄片对质点的引力126

习题9—3127

第四节 三重积分的概念及其计算法128

习题9—4133

第五节 利用柱面坐标和球面坐标计算三重积分134

一、利用柱面坐标计算三重积分134

二、利用球面坐标计算三重积分136

习题9—5141

第六节 含参变量的积分143

习题9—6149

总习题九149

第十章 曲线积分与曲面积分152

第一节 对弧长的曲线积分152

一、对弧长的曲线积分的概念与性质152

二、对弧长的曲线积分的计算法154

习题10—1158

第二节 对坐标的曲线积分159

一、对坐标的曲线积分的概念与性质159

二、对坐标的曲线积分的计算法163

三、两类曲线积分之间的联系168

习题10—2170

第三节 格林公式及其应用171

一、格林公式171

二、平面上曲线积分与路径无关的条件176

三、二元函数的全微分求积179

习题10—3184

第四节 对面积的曲面积分185

一、对面积的曲面积分的概念与性质185

二、对面积的曲面积分的计算法186

习题10—4190

第五节 对坐标的曲面积分191

一、对坐标的曲面积分的概念与性质191

二、对坐标的曲面积分的计算法197

三、两类曲面积分之间的联系200

习题10—5203

第六节 高斯公式 通量与散度204

一、高斯公式204

二、沿任意闭曲面的曲面积分为零的条件209

三、通量与散度211

习题10—6213

第七节 斯托克斯公式 环流量与旋度214

一、斯托克斯公式214

二、空间曲线积分与路径无关的条件219

三、环流量与旋度221

四、向量微分算子224

习题10—7224

总习题十226

第十一章 无穷级数228

第一节 常数项级数的概念和性质228

一、常数项级数的概念228

二、收敛级数的基本性质231

三、柯西审敛原理235

习题11—1236

第二节 常数项级数的审敛法237

一、正项级数及其审敛法237

二、交错级数及其审敛法245

三、绝对收敛与条件收敛247

习题11—2252

第三节 幂级数259

一、函数项级数的概念254

二、幂级数及其收敛性255

三、幂级数的运算260

习题11—3263

第四节 函数展开成幂级数264

一、泰勒级数264

二、函数展开成幂级数267

习题11—4275

第五节 函数的幂级数展开式的应用275

一、近似计算275

二、欧拉公式280

习题11—5281

第六节 函数项级数的一致收敛性及一致收敛级数的基本性质282

一、函数项级数的一致收敛性282

二、一致收敛级数的基本性质287

习题11—6292

第七节 傅里叶级数293

一、三角级数 三角函数系的正交性293

二、函数展开成傅里叶级数296

习题11—7303

第八节 正弦级数和余弦级数304

一、奇函数和偶函数的傅里叶级数304

二、函数展开成正弦级数或余弦级数307

习题11—8309

第九节 周期为2ι的周期函数的傅里叶级数310

习题11—9313

第十节 傅里叶级数的复数形式314

习题11—10317

总习题十一317

第十二章 微分方程320

第一节 微分方程的基本概念320

习题12—1325

第二节 可分离变量的微分方程326

习题12—2333

第三节 齐次方程321

一、齐次方程334

二、可化为齐次的方程239

习题12—3241

第四节 一阶线性微分方程342

一、线性方程342

二、伯努利方程345

习题12—4348

第五节 全微分方程349

习题12—5352

第六节 欧拉—柯西近似法353

习题12—6357

第七节 可降阶的高阶微分方程357

一、y(n)=f(x)型的微分方程358

二、y″=f(x,y′)型的微分方程360

三、y″=f(y,y′)型的微分方程363

习题12—7366

第八节 高阶线性微分方程366

一、二阶线性微分方程举例366

二、线性微分方程的解的结构369

三、常数变易法372

习题12—8375

第九节 二阶常系数齐次线性微分方程376

习题12—9386

第十节 二阶常系数非齐次线性微分方程387

一、f(x)=eλxPm(x)型388

二、f(x)=eλx[Pι(x)cos wx+Pn(x)sin wx]型390

习题12—10394

第十一节 欧拉方程395

习题12—11397

第十二节 微分方程的幂级数解法397

习题12—12401

第十三节 常系数线性微分方程组解法举例402

习题12—13405

总习题十二406

习题答案与提示409

1978《高等数学 下》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由同济大学数学教研室主编 1978 北京:高等教育出版社 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

高度相关资料

高等数学  下(1978 PDF版)
高等数学 下
1978 海口:南海出版公司
高等数学  下( PDF版)
高等数学 下
高等数学  下(1986.02 PDF版)
高等数学 下
1986.02 南京工学院出版社
高等数学  下(1987 PDF版)
高等数学 下
1987 沈阳:东北财经大学出版社
高等数学  下(1988 PDF版)
高等数学 下
1988 北京:科学技术文献出版社;重庆分社
高等数学  下(1999 PDF版)
高等数学 下
1999 北京:高等教育出版社
高等数学  下(1988 PDF版)
高等数学 下
1988 北京:高等教育出版社
高等数学  下(1992 PDF版)
高等数学 下
1992 天津:天津大学出版社
高等数学  下(1997 PDF版)
高等数学 下
1997 长春:吉林大学出版社
高等数学  下(1992 PDF版)
高等数学 下
1992 北京:兵器工业出版社
高等数学  下(1987 PDF版)
高等数学 下
1987 成都:成都科技大学出版社
高等数学  下(1985 PDF版)
高等数学 下
1985 上海:上海科学技术出版社
高等数学  下(1980 PDF版)
高等数学 下
1980 北京:人民邮电出版社
高等数学  下(1988 PDF版)
高等数学 下
1988 北京:北京航空学院出版社
高等数学  下(1978 PDF版)
高等数学 下
1978 北京:人民教育出版社

访客求助条款:还望您仔细阅读以下条款,继续浏览或使用服务表示其均得到您的认可:



➊️ 条款:请支持正版图书。肯定和感激作者及出版商的社会贡献,以及国Jia在「教育公平」上作出的努力。

➋️️ 条款:向博主支付任何费用都意味着在访客的主观意识下雇佣博主,形成博主受雇于访客的劳务关系。

➌ 条款:严禁恶意雇佣博主处理违法、有伤民族感情、有违优良传统、安全法规之内容,雇方需承担相关后果。

➍ 条款:博主会对受雇之资料内容进行安全审查,故而请不要求助或发布任何不法内容,此类求助直接退款。

➎ 条款:通常2小时内完成求助,深夜的求助最迟第二天12点前,个别特别疑难的会提前告知在24小时内完成。

➏ 条款:若包含多册(如上、下册)每次求助仅受理一册,除非原本一本就包含上下册内容,而非分多本发行。

➐ 条款:因资料保存年代久远、或受当时印刷技术限制而可能导致的质量风险,求助者需明了并自行承担。

➑ 条款:雇佣博主为您从事资料处理服务是收费的,其设定参照了北京市 最低工资标准 时薪来推算。