《高等工程数学 下》
作者 | 黄克欧等编 编者 |
---|---|
出版 | 北京:中国铁道出版社 |
参考页数 | 450 |
出版时间 | 1982(求助前请核对) 目录预览 |
ISBN号 | 15043·5254 — 求助条款 |
PDF编号 | 89564658(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

目录1
第五章变分法1
§1 变分法的基本概念1
1.1泛函定义及举例1
1.2变分问题举例3
1.3泛函的绝对极值、相对极值5
§5 受有约束的变分问题6
习 题 16
§2 最简单的变分问题7
2.1欧拉方程的推导7
2.2从欧拉方程求变分问题的驻值线(方法与举例)10
2.3活动端点的变分问题15
习 题 217
附录泛函J〔y(x)〕的极值判别方法19
习 题22
§3 泛函的变分概念23
3.1多元函数的一次微分、二次微分23
3.2泛函的一次变分δJ24
3.3二次变分的定义29
3.4泛函的一次、二次变分同改变量△J间的关系30
3.5泛函的导数同变分间的关系32
3.6函数的微分与泛函的变分的比较33
3.7泛函的极值定理34
3.8变分运算规则36
3.9例题37
习题 340
§4 其它类型的变分问题41
4.1 F〔x,y,y′,y″,…,y〔n〕〕类型的变分问题41
4.2 F(x,y1,y2,…,y?;y?,y′2,…,y′n)类型的变分问题43
4.3依?于二元函数z(x,y)的泛函47
4.4依?于二元函数z(x,y)的泛函的积分式中合有二阶偏导数的情况51
习 题 452
附录Dirich Let原理53
5.1受有函数形式的约束的变分问题57
5.2受有积分形式的约束的变分问题66
习题 570
§6 常微分方程的固有值问题,它同变分问题的关系74
6.1什么是常微分方程的固有值问题74
6.2固有函数的一些性质75
6.3常微分方程的固有值问题同变分问题间的关系80
§7 哈密尔顿(HamiLton)原理及其应用82
7.1哈密尔顿原理叙述(直角坐标系)82
7.2广义坐标系下的哈密尔顿原理85
7.3哈密尔顿原理应用举例87
7.4哈密尔顿原理的应用(续)89
习题792
1.2矢量的加、减法95
第六章矢量与场论96
§1 矢量代数简介96
1.1矢量与数量96
1.3矢量的坐标表示97
1.4矢量的乘法——数积、矢积、混合积98
1.5应用举例100
习题 1102
§2 矢量分析103
2.1矢量函数103
2.2矢量函数的极限104
2.4矢量函数的导数105
2.3矢量函数的连续105
2.5矢量函数的微分108
2.6求导公式及举例108
2.7矢量函数的积分111
2.8应用——力学问题113
习题 2116
§3 场118
3.1数量场与矢量场118
3.2点函数118
3.3数量场的等值面与矢量场的等量线119
习题 3121
§4 数量场的梯度121
4.1方向导数121
4.2数量场的梯度123
4.3梯度的性质125
4.4应用举例126
习题 4127
§5 矢量场的散度128
5.1矢量场的通量128
5.2矢量场的散度130
5.3散度的计算132
5.4散度的性质及计算举例134
5.5高斯(Gau ss)公式及其应用135
习题 5140
§6 矢量场的旋度141
6.1矢量场的环量141
6.2矢量场的旋度144
6.3旋度的计算146
6.4旋度的性质及举例148
6.5斯托克斯(Stokes)公式及格林(Green)公式150
习题 6153
§7 关于算符?及△154
7.1算符与公式154
7.2举例157
习题 7158
§8 几种常用的场159
8.1有势场159
8.2管形场161
8.3调和场与调和函数163
习题 8164
§9 曲线坐标及曲线坐标下的?u、165
?·?、?×?、△u165
9.1曲线坐标165
9.2正交曲线坐标167
9.3正交曲线坐标下的?u169
9.4正交曲线坐标系下的?·?与 ?×?171
9.5正交曲线坐标系下的△u174
9.6柱面坐标与球面坐标下的?u、?·?、?×?、△u及其它有关量175
习题 9176
§10*应用问题举例177
10.1电磁场方面的应用——麦克斯韦方程组177
10.2流体力学方面的应用——连续性方程181
10.3热传导方面的应用——热传导方程182
习题10184
第七章数值计算方法185
§1 误差185
§2线性方程组188
2.1引言188
2.2高斯消去法188
2.3无回代主元素法(约当法)190
2.4行列式、逆矩阵193
2.5消去法的误差195
2.6简单迭代法(雅可比迭代法)198
2.7松弛迭代法·赛德尔迭代法202
2.8对称方程组的平方根法204
2.9三对角方程组的追赶法206
§3 一元非线性方程式209
3.1求实根的区间二分法209
3.2弦位法210
3.3牛顿法211
3.4抛物线法212
§4 矩阵的特征值、特征向量214
4.1特征值问题214
4.2求绝对值最大的特征值及其对应的特征向量的乘幂法及反乘幂法215
4.3实对称矩阵的雅可比方法219
4.4 求矩阵全部特征值的QR方法223
§5 数值逼近238
5.1拉格朗日插值公式238
5.2牛顿插值公式·差商241
5.3等距插值点的插值公式·差分244
5.4样条函数插值法248
5.5曲线的拟合·最小二乘法251
§8 数值微分和数值积分255
6.1数值微分255
6.2数值微分的误差259
6.3牛顿-柯特斯数值积分公式259
6.4复化求积公式262
6.5样条函数数值积分法264
7.1折线法与改进折线法265
§7 常微分方程初值问题265
7.2龙格-库塔法267
7.3一阶微分方程组初值问题269
§8 常微分方程边值问题270
8.1边值问题的一般概念270
8.2差分方法及差分方程的追赶法271
8.3样条函数方法274
§9拉普拉斯方程277
9.1拉普拉斯方程的差分方程277
9.2差分方程解的存在、唯一性282
9.3差分方程的迭代解法283
9.4一般二阶椭圆型方程的差分解法286
§10热传导方程287
10.1热传导方程的显式差分方程287
10.2隐式差分方程及其追赶解法289
10.3差分方程的收敛性及稳定性290
10.4第三边值问题的差分方程295
§11波动方程296
11.1初值问题的差分方程296
11.2混合问题的差分方程297
11.3差分方程的收敛性及稳定性300
第八章概率论302
§1事件与概率302
1.1样本空间302
1.2事件303
1.3事件的运算304
1.4频率305
1.5概率的定义307
1.6古典型的概率计算310
1.7条件概率315
1.8事件的独立性318
习题 1322
§2 随机变量327
2.1随机变量327
2.2分布函数330
2.3离散型随机变量331
2.4连续型随机变量334
2.5随机向量336
2.6随机变量的独立性341
习题 2345
§3 数字特征350
3.1数学期望350
3.2方差358
3.3车贝晓夫不等式362
3.4相关系数363
3.5矩366
3.6中数368
习题 3370
§4 常用离散型概率分布374
4.1 0-1分布374
4.2均匀分布375
4.3二项分布375
4.4超几何分布380
4.5普阿松分布382
4.6几何分布385
4.7巴斯卡分布387
4.8多项分布388
习题 4390
§5 常用连续型概率分布392
5.1均匀分布392
5.2正态分布393
5.3指数分布399
5.4 Г-分布400
5.5 B-分布401
5.6韦布分布401
5.7拉普拉斯分布402
5.8多元正态分布403
习 题 5406
§6 随机变量的函数409
6.1随机变量的函数分布409
6.2随机向量的函数的分布413
6.3顺序统计量的分布416
6.4随机向量的变换418
6.5 X2-分布421
6.6 t-分布424
6.7 F-分布425
习 题 6427
§7 极限定理430
7.1大数定律430
7.2车贝晓夫大数定律431
7.3 贝努里大数定律434
7.4 中心极限定理435
7.5林德伯格-勒维定理435
7.6德莫佛-拉普拉斯定理437
7.7格德伯格定理440
习 题 7441
附录一常用分布表444
附录二二项分布?pk(n,p)的数值表447
附录三普阿松分布 ?pk(λ)的数值表448
附录四正态分布数值表450
1982《高等工程数学 下》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由黄克欧等编 1982 北京:中国铁道出版社 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- 高等工程数学详解 下
- 1987 晓园出版社
-
- 高等数学教程 下
- 1999 武汉:武汉大学出版社
-
- 高等工程数学
- 1959 台湾华东书局股份有限公司
-
- 高等工程数学 下
- 1982 北京:中国铁道出版社
-
- 高等工程数学
- 1994 武汉:华中理工大学出版社
-
- 高等工程数学 下
- 1981 北京:人民教育出版社
-
- 高等工程数学 下
- 1979 东华书局
-
- 高等数学教程 下
- 1955 北京:高等教育出版社
-
- 高等工程数学
- 1993 上海:上海科学技术文献出版社
-
- 高等数学与工程数学
- 1984 广州:广东科技出版社
-
- 高等数学与工程数学
- 1982 广州:广东科技出版社
-
- 高等数学教程 下
- 1995.09 兰州市:兰州大学出版社
-
- 高等工程数学 上
- 1993 徐州:中国矿业大学出版社
-
- 高等工程数学 下
- 1993 徐州:中国矿业大学出版社
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD