《实变函数论与泛函分析下册第二版》

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

第四章度量空间1

1度量空间的基本概念2

1.引言2

2.距离的定义4

3.极限的概念6

4.常见度量空间7

习题13

2线性空间上的范数15

1.线性空间15

2.例19

3.赋范线性空间20

4.凸集24

5.商空间26

习题27

3空间 Lp29

1.Lp 上的范数29

2.平均收敛与依测度收敛的关系34

3.空间 L∞(E,μ)35

4.数列空间 Lp38

习题39

4度量空间中的点集40

1.内点,开集40

2.极限点、闭集43

3.子空间的开集和闭集48

4.联络点集、区域49

5.点集间的距离51

6.n 维欧几里得空间中的 Borel 集51

7.赋范线性空间中的商空间52

习题54

5连续映照56

1.连续映照和开映照56

2.闭映照59

3.连续曲线62

习题63

6稠密性64

1.稠密性的概念64

2.可析点集66

3.疏朗集68

习题69

7完备性70

1.完备性的概念70

2.某些完备空间73

3.完备空间的重要性质77

4.度量空间的完备化80

习题84

8不动点定理85

1.压缩映照原理85

2.应用92

3.习题95

9致密集97

1.致密集的概念97

2.致密集和完全有界集100

3.某些具体空间中致密点集的特征104

4.紧集108

5.紧集上的连续映照110

6.有限维赋范线性空间111

7.凸紧集上的不动点定理117

习题119

10拓扑空间和拓扑线性空间121

1.拓扑空间121

2.拓扑线性空间129

第五章有界线性算子132

1有界线性算子132

1.线性算子与线性泛函概念132

2.线性算子的有界性与连续性136

3.有界线性算子全体所成的空间141

习题147

2连续线性泛函的表示及延拓150

1.连续线性泛函的表示150

2.连续线性泛函的延拓158

3.泛函延拓定理的应用166

4.测度问题174

习题177

3共轭空间与共轭算子180

1.二次共轭空间180

2.算子序列的收敛性182

3.弱致密性(弱列紧性)187

4.共轭算子189

习题191

4逆算子定理和共鸣定理193

1.逆算子定理193

2.共鸣定理201

3.共鸣定理的应用204

习题210

5线性算子的正则集与谱,不变子空间214

1.特征值与特征向量214

2.算子的正则点与谱点218

3.不变子空间233

习题239

6关于全连续算子的谱分析241

1.全连续算子的定义和基本性质241

2.全连续算子的谱247

3.全连续算子的不变闭子空间255

习题261

第六章Hilbert 空间的几何学与算子263

1基本概念263

1.内积与内积空间264

2.Hilbert 空间266

习题270

2投影定理272

1.直交和投影272

2.投影定理274

习题279

3内积空间中的直交系281

1.就范直交系281

2.直交系的完备性286

3.直交系的完全性291

4.线性无关向量系的直交化293

5.可析 Hilbert 空间的模型295

习题297

4共轭空间和共轭算子300

1.连续线性泛函的表示300

2.共轭空间301

3.共轭算子302

4.有界自共轭算子308

习题309

5投影算子312

1.投影算子的定义和基本性质312

2.投影算子的运算316

3.投影算子与不变子空间323

习题326

6双线性 Hermite 泛函与自共轭算子328

1.双线性 Hermite 泛函328

2.有界二次泛函333

习题335

7谱系、谱测度和谱积分336

1.几个例336

2.谱测度339

3.谱系347

4.谱系和谱测度的关系351

习题355

8酉算子的谱分解357

1.酉算子的定义357

2.酉算子的谱分解359

3.相应于酉算子的谱测度369

4.L2-Fourier 变换371

5.平稳随机序列374

6.平移算子376

习题382

9自共轭算子的谱分解384

1.引言384

2.共轭算子386

3.对称算子与自共轭算子390

4.Cayley 变换394

5.无界函数谱积分402

6.自共轭算子的谱分解定理406

7.函数模型412

8.全连续自共轭算子417

习题418

10正常算子的谱分解421

1.正常算子421

2.乘积谱测度423

3.正常算子的谱分解428

4.算子代数430

习题432

11算子的扩张与膨胀432

1.闭扩张433

2.半有界算子的自共轭扩张438

3.广义谱系的扩张谱系446

4.压缩算子的酉膨胀461

习题462

第七章广义函数466

1基本函数与广义函数466

1.引言466

2.基本函数空间468

3.局部可积函数空间471

4.广义函数空间474

习题477

2广义函数的性质与运算478

1.广义函数的导函数和广义函数列的极限478

2.广义函数的原函数484

3.广义函数的乘法运算485

4.广义函数的支集486

5.有限级广义函数的构造487

6.自共轭算子的广义特征展开491

习题493

3广义函数的 Fourier 变换494

1.基本函数的 Fourier 变换494

2.Z 空间上的连续线性泛函498

3.广义函数的 Fourier 变换的概念501

4.广义函数的卷积504

5.常系数线性偏微分方程的基本解507

6.基本函数空间 S515

7.广义函数空间 S'519

习题522

参考文献523

索引526

《实变函数论与泛函分析下册第二版》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

高度相关资料

实变数函数论与泛函分析概要(1960 PDF版)
实变数函数论与泛函分析概要
1960 上海:上海科学技术出版社
实变函数与泛函分析引论( PDF版)
实变函数与泛函分析引论
突变函数论与泛函分析  下册(1979 PDF版)
突变函数论与泛函分析 下册
1979
实变函数与泛函分析基础(1983年12月第1版 PDF版)
实变函数与泛函分析基础
1983年12月第1版
实变函数与泛函分析概要 第二版 第一册(1989 PDF版)
实变函数与泛函分析概要 第二版 第一册
1989
实变函数论与泛函分析  上(1978 PDF版)
实变函数论与泛函分析 上
1978
实变函数论与泛函分析  下册(1979 PDF版)
实变函数论与泛函分析 下册
1979
实变函数与泛函分析基础(1983 PDF版)
实变函数与泛函分析基础
1983
实变函数论与泛函分析(1987年06月第1版 PDF版)
实变函数论与泛函分析
1987年06月第1版 北京师范大学出版社
实变函数与泛函分析(1995 PDF版)
实变函数与泛函分析
1995 昆明:云南科学技术出版社
实变函数与泛函分析教程(1990 PDF版)
实变函数与泛函分析教程
1990 北京:北京理工大学出版社
实变函数论与泛函分析(1992 PDF版)
实变函数论与泛函分析
1992 北京:经济科学出版社
实变函数论与泛函分析  下  第2版(1979 PDF版)
实变函数论与泛函分析 下 第2版
1979 北京:高等教育出版社
实变数函数论与泛函分析概要  第2版(1963 PDF版)
实变数函数论与泛函分析概要 第2版
1963 上海:上海科学技术出版社
实变函数泛函与分析概要  第1册(1989 PDF版)
实变函数泛函与分析概要 第1册
1989 北京:高等教育出版社

访客求助条款:还望您仔细阅读以下条款,继续浏览或使用服务表示其均得到您的认可:



➊️ 条款:请支持正版图书。肯定和感激作者及出版商的社会贡献,以及国Jia在「教育公平」上作出的努力。

➋️️ 条款:向博主支付任何费用都意味着在访客的主观意识下雇佣博主,形成博主受雇于访客的劳务关系。

➌ 条款:严禁恶意雇佣博主处理违法、有伤民族感情、有违优良传统、安全法规之内容,雇方需承担相关后果。

➍ 条款:博主会对受雇之资料内容进行安全审查,故而请不要求助或发布任何不法内容,此类求助直接退款。

➎ 条款:通常2小时内完成求助,深夜的求助最迟第二天12点前,个别特别疑难的会提前告知在24小时内完成。

➏ 条款:若包含多册(如上、下册)每次求助仅受理一册,除非原本一本就包含上下册内容,而非分多本发行。

➐ 条款:因资料保存年代久远、或受当时印刷技术限制而可能导致的质量风险,求助者需明了并自行承担。

➑ 条款:雇佣博主为您从事资料处理服务是收费的,其设定参照了北京市 最低工资标准 时薪来推算。