《复分析》
作者 | L.V.阿尔福斯(L.V.Ahlfors)著;张立译 编者 |
---|---|
出版 | 上海:上海科学技术出版社 |
参考页数 | 335 |
出版时间 | 1962(求助前请核对) 目录预览 |
ISBN号 | 13119·485 — 求助条款 |
PDF编号 | 87781048(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

第1章 复数1
1复数的代数学1
1.1算术运算1
1.2平方根2
1.3复数体的存在4
1.4共轭,绝对值6
1.5不等式9
2复数的几何表示12
2.1几何的加法及乘法12
2.2二项方程14
2.3解析几何16
2.4球面表示17
第2章 复函数21
1解析函数的概念导引21
1.1极限与连续性22
1.2解析函数24
1.3多项式28
1.4有理函数30
2幂级数的基础理论33
2.1序列33
2.2级数35
2.3一致收敛性36
2.4幂级数38
2.5Abel极限定理42
3指数函数与三角函数43
3.1指数函数43
3.2三角函数44
3.3周期性45
3.4对数函数47
1初等点集拓扑49
第3章 看成映照的解析函数49
1.1集和元素50
1.2度量空间51
1.3连通性54
1.4紧致性59
1.5连续函数64
1.6拓扑空间67
2共形性69
2.1弧与闭曲线69
2.2域内的解析函数70
2.3共形映照75
2.4长度和面积77
3线性变换78
3.1线性群79
3.2交比81
3.3对称性83
3.4有向圆85
3.5圆族87
4初等共形映照91
4.1阶层曲线的应用91
4.2初等映照概说94
4.3初等Riemann面98
第4章 复积分101
1基本定理101
1.1线积分101
1.2可求长的弧104
1.3线积分作为弧的函数105
1.4矩形的Cauchy定理109
1.5圆盘中的Cauchy定理112
2Cauchy积分公式114
2.1一点关于闭曲线的指示数114
2.2积分公式118
2.3高阶导数119
3解析函数的局部性质123
3.1可去奇点,Taylor定理123
3.2零点和极点126
3.3局部映照130
3.4极值原理134
4Cauchy定理的一般形式137
4.1链和闭链137
4.2单连通性139
4.3同调140
4.4Cauchy定理的一般叙述141
4.5Cauchy定理的证明142
4.6局部正合微分143
4.7多连通域146
5留数计算148
5.1留数定理148
5.2幅角原理152
5.3定积分的计算154
6调和函数161
6.1定义和基本性质161
6.2均值性质164
6.3Poisson公式166
6.4Schwarz定理168
6.5对称原理171
第5章 级数与乘积展开174
1幂级数展开式174
1.1Weierstrass定理174
1.2Taylor级数178
1.3Laurent级数183
2部分分式与因子分解185
2.1部分分式186
2.2无穷乘积189
2.3典型乘积192
2.4Г-函数196
2.5Stirling公式199
3整函数205
3.1Jensen公式206
3.2Hadamard定理207
4Riemannζ-函数211
4.1乘积展开212
4.2ζ(s)扩张到整个平面213
4.3函数方程214
4.4ζ-函数的零点217
5.1等度连续性218
5正规族218
5.2正规性和紧致性219
5.3Arzela定理221
5.4解析函数族223
5.5经典定义225
第6章 共形映照Diriehlet问题228
1Riemann映照定理228
1.1叙述和证明228
1.2边界性态231
1.3反射原理的应用232
1.4解析弧233
2多边形的共形映照234
2.1在角上的性态235
2.2Schwarz-Christoffel公式236
2.3映成矩形的映照238
2.4Schwarz的三角形函数240
3调和函数的进一步观察241
3.1具有均值性质的函数242
3.2Harnack原理243
4Dirichlet问题245
4.1次调和函数245
4.2Dirichlet问题的解248
5多连通域的典型映照252
5.1调和测度253
5.2Green函数258
5.3具有平行缝的域260
第7章 椭圆函数263
1单周期函数263
1.1用指数函数表示263
1.2Fourier展开264
1.3有穷阶函数264
2.1周期模265
2双周期函数265
2.2幺模变换266
2.3典型基268
2.4椭圆函数的一般性质270
3Weierstrass理论272
3.1Weierstrass?-函数272
3.2函数ζ(z)与σ(z)274
3.3微分方程275
3.4模函数λ(τ)278
3.5λ(τ)所作的共形映照279
1.1Weierstrass理论284
第8章 整体解析函数284
1解析延拓284
1.2芽与层285
1.3截口与Riemann面288
1.4沿弧的解析延拓290
1.5同伦曲线293
1.6单值性定理296
1.7支点298
2代数函数301
2.1两多项式的结式302
2.2代数函数的定义与性质303
2.3临界点上的性态305
3Picard定理309
3.1空隙值309
4线性微分方程310
4.1寻常点311
4.2正则奇点313
4.3无穷远点附近的解316
4.4超比微分方程317
4.5Riemann的观点321
索引325
1962《复分析》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由L.V.阿尔福斯(L.V.Ahlfors)著;张立译 1962 上海:上海科学技术出版社 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- 简明复分析
- 1996 北京:北京大学出版社
-
- 实流形和复流形上的分析
- 1986
-
- 复(变)分析原理及题解
- 1993
-
- 实分析和复分析教程 第3版
- MCGRAW-HILL BOOK COMAPANY
-
- 分离及复杂物质分析 第2版
- 1984 北京:高等教育出版社
-
- 复杂心律失常实例分析
- 1992.05 杭州市:浙江大学出版社
-
- 分离及复杂物质分析
- 1984 北京:高等教育出版社
-
- 复变分析原理及题解
- 1987 台湾:晓园出版社
-
- 实流形和复流形上的分析
- 1986 北京:科学出版社
-
- 可计算性复杂性语言 理论计算机科学基础
- 1989 北京:清华大学出版社
-
- 复变函数论
- 1960 北京:高等教育出版社
-
- 复合材料力学分析与设计
- 1999 长沙:国防科技大学出版社
-
- 应用复分析
- 1993 上海:复旦大学出版社
-
- 实分析和复分析
- 1981 北京:人民教育出版社
-
- 复分析 第3版
- 1984 上海:上海科学技术出版社
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD