《表2 各模块重构时间:基于SRAM型FPGA的实时容错自修复系统设计方法》

《表2 各模块重构时间:基于SRAM型FPGA的实时容错自修复系统设计方法》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《基于SRAM型FPGA的实时容错自修复系统设计方法》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

各动态模块重构时间花费表2所示。实验中所采取的故障注入方式同样采取动态重构方式,即通过FPGA的内部配置访问通道(ICAP)动态地对各模块进行错误配置来实现。实验中故障检测方案采用上文所提出的内嵌式故障检测结构,其故障检测延迟与信号在进位链中的传播延迟相关,即和进位链的串联个数相关,而进位链中信号传播延迟为纳秒级,远小于模块重构时间,可认为模块的自修复时间近似于模块的重构时间。由实验结果可看出模块重构时间与模块占用资源数和模块重构区域大小成正比,即模块占用资源数越多,其划分的最小重构区域则越大,模块重构时间花费越大。而同时,功能模块划分越小,其进行冗余设计时所带来的额外资源开销比例则越大。故在系统设计时,需要综合考虑资源分配情况和故障修复时间要求,合理地进行模块粒度划分,实现粗粒度和细粒度的灵活组合。