《表2 3种方法的分析结果、误差、CFD计算次数、计算时间比较》

《表2 3种方法的分析结果、误差、CFD计算次数、计算时间比较》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《几何不确定性区间分析及鲁棒气动优化设计》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

为验证不确定性分析的准确性,采用蒙特卡罗方法进行不确定性分析,即在设计空间内选取200个随机样本进行精确CFD分析并统计,并与上述3种结果对比,直接优化、Kriging模型优化与蒙特卡罗方法结果比较如图4所示。结果表明直接优化方法具备较高的精度,只通过20个初始样本构建Kriging模型,得到的结果与直接优化结果存在一定误差,通过加点重建Kriging模型,误差进一步减小。直接优化中每一步所有CFD分析可并行进行,建立代理模型的20个初始样本也可并行进行CFD分析,但加点过程无法并行进行,故3种方法的分析结果、相对误差、CFD计算次数、并行计算时间比较如表2所示。其中,采用Kringing模型1最大相对误差小于5%,而分析效率可提高95%。3种方法得到的阻力系数变化区间上下界对应的翼型及压力分布如图5所示,由图中可以看出,各方法得到的翼型相似。