《表2 有机污染物降解细菌的转录组研究》

《表2 有机污染物降解细菌的转录组研究》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《原核生物转录组研究的现状与进展》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

了解降解的分子机制对制定有效的生物修复策略至关重要。近年来,有机污染物降解细菌的转录组学研究日益增多(表2)。多环芳烃在人类影响的环境中普遍存在[19],这可能与代表性污染源(如高温燃烧、交通排放、生物质燃烧)的大量释放[20]和各种分散过程有关。环境中的多环芳烃有很大一部分可以被微生物去除,多环芳烃的微生物降解已经成为一种重要的修复技术[21-22]。转录组和蛋白质组学分析揭示了Bacillus subtilis对芳香族化合物的代谢机制,发现yfiDE(catDE)操纵子编码一种儿茶酚2,3-双加氧酶,这种酶是由儿茶酚强烈诱导的。yodED(mhqED)、ydfNOP(mhqNOP)操纵子和ykcA(mhqA)编码对苯二酚特异性的外二醇加双氧酶[21]。Rhodococcus jostii RHA1能降解多氯联苯(PCB),转录组分析发现该菌株具有6个新ORFs参与促进PCB代谢,其中Ro10225蛋白对RHA1中PCB/联苯双氧合酶复合物的形成至关重要[22]。Corynebacterium jeikeium K411降解香草醇的转录组分析发现,4-羟基-3-甲氧苄醇可导致95个基因的差异表达,其中86个基因上调,耐药决定因子cmx和预测的毒力因子sapA和sapD的表达水平显著提高。Mycobacterium sp.A1-PYR降解不同多环芳烃的转录组分析表明,3种多环芳烃降解酶在二元底物中的表达水平明显高于仅在吡咯底物中的表达水平[23]。这些酶构成了一个完整的酶系统,实现了PYR的所有转化步骤,其大部分编码基因在A1-PYR菌株的基因组中形成了一个新的基因级联,为微生物降解难降解的多环芳烃与易降解的多环芳烃共代谢提供了分子视角。氯脲-乙基是一种典型的长期残留磺脲类除草剂,长期滞留对轮作作物危害很大。微生物降解被认为是最可接受的去除方法,但其降解机理尚不清楚。R.erythropolis D310-1是氯霉素-乙基高效的降解菌,转录组结果表明,菌株D310-1在氯霉素-乙基降解过程中上调了500个基因。主要KEGG代谢途径为甲苯降解和氨基苯甲酸酯降解[24]。