《Invariants of Quadratic Differential Forms》
作者 | Oswald Veblen 编者 |
---|---|
出版 | At The University Press |
参考页数 | 102 |
出版时间 | 1927(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 818131548(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

Ⅰ.FORMAL PRELIMINARIES1
1.The summation convention1
2,3.The Kronecker deltas3
4.Linear equations6
5,6.Functional Determinants7
7.Derivative of a determinant8
8.Numerical relations8
9,10.Minors,cofactors,and the Laplace expansion9
11.Historical11
Ⅱ.DIFFERENTIAL INVARIANTS13
1.N-dimensional space13
2.Transformations of coordinates13
3.Invariants14
4.Differential invariants15
5,6.Differentials and contravariant vectors16
7.A general class of invariants19
8.Tensors19
9.Relative scalars20
10.Covariant vectors21
11,12.Algebraic combinations of tensors22
13.The commonness of tensors24
14.Numerical tensors25
15.Combinations of vectors26
16.Historical and general remarks27
Ⅲ.QUADRATIC DIFFERENTIAL FORMS30
1.Differential forms30
2.Linear differential forms30
3,4.Quadratic differential forms31
5.Invariants derived from basic invariants32
6,7.Invariants of a quadratic differential form32
8,9.The fundamental affine connection33
10.Affine connections in general35
11,12.Covariant differentiation36
13.Geodesic coordinates38
14,15.Formulas of covariant differentiation39
16,17.The curvature tensor41
18,19.Riemann-Christoffel tensor43
20.Reduction theorems44
21.Historical remarks47
22.Scalar invariants48
Ⅳ.EUCLIDEAN GEOMETRY50
1,2.Euclidean geometry50
3.Euclidean affine geometry53
4,5.Euclidean vector analysis55
6.Associated vectors and tensors56
7.Distance and scalar product57
8,9.Area59
10.First order differential parameters60
11.Euclidean covariant differentiation61
12.The divergence62
13.The Laplacian or Lamé differential parameter of the second order63
14.The curl of a vector64
15,16.Generalized divergence and curl64
17.Historical remarks66
Ⅴ.THE EQUIVALENCE PROBLEM67
1.Riemannian geometry67
2.The theory of surfaces68
3.Spaces immersed in a Euclidean space69
4,5.Condition that a Riemannian space be Euclidean69
6.The equivalence problem72
7.A lemma on mixed systems73
8.Equivalence theorem for quadratic differential forms76
9.Equivalence of affine connections77
10,11.Automorphisms of a quadratic differential form78
12.Equivalence theorem in terms of scalars79
13.Historical remarks80
Ⅵ.NORMAL COORDINATES82
1,2.Affine geometry of paths82
3,4.Affine normal coordinates85
5.Affine extensions87
6.The affine normal tensors89
7,8.The replacement theorems90
9,10,11,12.The curvature tensor and the normal tensors91
13,14,15,16,17.Affine extensions of the fundamental tensor94
18.Historical and general remarks100
19.Formulas for the extensions of tensors102
1927《Invariants of Quadratic Differential Forms》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由Oswald Veblen 1927 At The University Press 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- Bilinear Algebra: An Introduction to the Algebraic Theory of Quadratic Forms Volume 7
- 1997 Gordon and Breach Science Publishers
-
- MATRICES AND QUADRATIC FORMS
- A MEMBER OF THE HODDER HEADLINE GROUP
-
- Invariants of Quadratic Differential Forms
- 1927 At The University Press
-
- QUADRATIC FORM THEORY AND DIFFERENTIAL EQUATIONS
- 1980 ACADEMIC PRESS
-
- Traces of differential forms and Hochschildhomology
- 1989 Springer-Verlag
-
- Quadratic forms in infinite dimensional vector spaces
- 1979 Birkh user
-
- The algebraic theory of quadratic forms
- 1973 W.A.Benjamin
-
- The geometry of positive quadratic forms
- 1983 American Mathematical Society
-
- DIFFERENTIAL FORMS IN MATHEMATICAL PHYSICS
- 1978 NORTH-HOLLAND PUBLISHING COMPANY
-
- INVARIANTS OF QUADRATIC DIFFERENTIAL FORMS
- 1908 CAMBRIDGE AT THE UNIVERSITY PRESS
-
- QUADRATIC AND HERMITIAN FORMS
- 1992 SPRINGER-VERLAG
-
- Arithmetic of quadratic forms
- 1993 Cambridge University Press
-
- Integral quadratic forms
- 1960 Cambridge University Press
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD