《Representations of Compact Lie Groups=紧李群的表示》
作者 | Theodor Brocker ; Tammo tom Di 编者 |
---|---|
出版 | Springer-Verlag |
参考页数 | 318 |
出版时间 | 1999(求助前请核对) 目录预览 |
ISBN号 | 7506201275 — 求助条款 |
PDF编号 | 813874628(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER ⅠLie Groups and Lie Algebras1
1.The Concept of a Lie Group and the Classical Examples1
2.Left-Invariant Vector Fields and One-Parameter Groups11
3.The Exponential Map22
4.Homogeneous Spaces and Quotient Groups30
5.Invariant Integration40
6.Clifford Algebras and Spinor Groups54
CHAPTERⅡElementary Representation Theory64
1.Representations65
2.Semisimple Modules72
3.Linear Algebra and Representations74
4.Characters and Orthogonality Relations77
5.Representations of SU(2),SO(3),U(2),and O(3).84
6.Real and Quaternionic Representations93
7.The Character Ring and the Representation Ring102
8.Representations of Abelian Groups107
9.Representations of Lie Algebras111
10.The Lie Algebra sl(2,?)115
CHAPTERⅢRepresentative Functions123
1.Algebras of Representative Functions123
2.Some Analysis on Compact Groups129
3.The Theorem of Peter and Weyl133
4.Applications of the Theorem of Peter and Weyl136
5.Generalizations of the Theorem of Peter and Weyl138
6.Induced Representations143
7.Tannaka-Krein Duality146
8.The Complexification of Compact Lie Groups151
CHAPTER ⅣThe Maximal Torus of a Compact Lie Group157
1.Maximal Tori157
2.Consequences of the Conjugation Theorem164
3.The Maximal Tori and Weyl Groups of the Classical Groups169
4.Cartan Subgroups of Nonconnected Compact Groups176
CHAPTER ⅤRoot Systems183
1.The Adjoint Representation and Groups of Rank 1183
2.Roots and Weyl Chambers189
3.Root Systems197
4.Bases and Weyl Chambers202
5.Dynkin Diagrams209
6.The Roots of the Classical Groups216
7.The Fundamental Group,the Center and the Stiefel Diagram223
8.The Structure of the Compact Groups232
CHAPTER ⅥIrreducible Characters and Weights239
1.The Weyl Character Formula239
2.The Dominant Weight and the Structure of the Representation Ring249
3.The Multiplicities of the Weights of an Irreducible Representation257
4.Representations of Real or Quaternionic Type261
5.Representations of the Classical Groups265
6.Representations of the Spinor Groups278
7.Representations of the Orthogonal Groups292
Bibliography299
Symbol Index305
Subject Index307
1999《Representations of Compact Lie Groups=紧李群的表示》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由Theodor Brocker ; Tammo tom Di 1999 Springer-Verlag 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- LIE GROUPS ASSOCIATED WITH PSEUDO GROUPS
- 1962 DEPT. OF COMMERCE
-
- LIE GROUPS AND COMPACT GROUPS
- 1979 CAMBRIDGE UNIVERSITY PRESS
-
- REPRESENTATIONS OF SOLVABLE GROUPS
- 1993 CAMBRIDGE UNIVERSITY PRESS
-
- Representations of real reductive Lie groups
- 1981 Birkh user Boston
-
- Lie algebras and locally compact groups
- 1971 University of Chicago Press
-
- Lie groups
- 1957 Cambridge University Press
-
- Representations of Compact Lie Groups
- 1985 Springer Berlin Heidelberg
-
- Representations of finite Chevalley groups : a survey
- 1979 Springer-Verlag
-
- REPRESENTATIONS OF ALGEBRAIC GROUPS
- 1987 ACADEMIC PRESS INC
-
- Representations of Nilpotent Lie Groups and Their Applications Part I: Basic Theory and Examples
- 1990 Cambridge University Press
-
- Representations of Reductive Groups
- 1998 Cambridge University Press
-
- Representations of Compact Lie Groups=紧李群的表示
- 1999 Springer-Verlag
-
- LIE GROUPS NO.46
- 1957 CAMBRIDGE AT THE UNIVERSITY PRESS
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD