《表4 AM制造零件表面精加工技术的比较》

《表4 AM制造零件表面精加工技术的比较》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《微观选择性激光熔化技术发展的现状及未来展望》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

为了从前文讨论的可用技术库中识别出适用于微观SLM组件的表面处理工艺,必须考虑许多因素,包括制造特征的初始粗糙度、零件尺寸、几何形状、最小特征尺寸分辨率、工艺复杂性、周期时间等。微观SLM组件的尺寸通常为毫米级,而最小特征分辨率却在几微米的范围内(表1)。表4中列出了用于微观SLM组件的技术的合格性。尽管整体研磨技术可以获得良好的表面光洁度,但可能会在此过程中损害微尺度特征。用计算机数控技术(CNC)加工微观SLM零件是可行的,但复杂几何条件下的微加工和刀具路径控制是难点。特别是,薄壁的精密加工以及内部和高深宽比特征的精密加工非常困难且耗时。CHE和ECP通常要求表面平整,并要沿着边缘侵蚀材料,这可能会导致微小零件的尺寸误差较大。磨料喷砂通常用于整饰许多行业(如牙科和珠宝)的微小零件,所以可能是一种理想的选择。微磨料喷砂是一系列医疗应用中最常用的表面处理之一,例如用微磨料喷砂可获得支持骨整合的牙种植体所需的表面光洁度[122,131,138–140]。Kennedy等[124]在高速钢(HSS)和涂层碳化物上使用陶瓷珠进行微喷丸处理,表面粗糙度降低60%,最细的表面Ra为0.4μm。激光抛光是另一种合适的选择,尽管重熔引起的热应力可能导致部件变形,尤其残余的热应力对薄弱部分的冲击很大。