《表2 (a)化成充电阶段荷电态和(b)随后一圈充电到100%荷电态分别对应的容量损失[30]》

《表2 (a)化成充电阶段荷电态和(b)随后一圈充电到100%荷电态分别对应的容量损失[30]》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《锂离子电池化成技术研究进展》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

化成和老化温度对电极SEI膜的特性起决定性作用。关于化成温度,有着两种对立的研究结果。一方面是高温化成被报道有着严重的容量损失[29-30]。German等[30]通过研究Lix(Ni1/3Co1/3Mn1/3)yO2(NCM)/石墨全电池、NCM半电池和石墨半电池化成过程中温度对容量损失和随后电化学性能的影响,表明正极和负极的容量损失来源不同,其中负极容量损失主要是因为石墨表面SEI膜的生成,而正极容量损失则归因于NCM的动力学受到抑制。随着化成温度的上升,正负极的不可逆容量损失增加,而由于NCM电极的锂扩散系数升高,使得正极与负极的容量损失比率下降,因此严重劣化了石墨的电池性能。如表2所示,电极分别在不同温度下化成和随后室温下充放电两个过程的容量损失。化成温度上升,石墨负极电极容量损失归因于电解液组分的分解程度加剧。NCM正极由于动力学加快,容量损失下降,但低温化成后造成的容量损失在随后的常温循环过程中可部分恢复。因此高温化成对全电池并没有优势,正负极均表现严重的锂损失和石墨电极循环稳定性的下降。同样地,Yan等[31]通过对比石墨半电池和NCM/石墨全电池在不同温度下化成行为的差距,得出以下结论:高温化成导致严重的副反应,低温化成将形成低离子导电率的SEI膜,常温化成形成的SEI膜具有最好的离子导电性和稳定性。不同的是,Huang等[32]证明高温化成后,电池有着更高的放电容量和更好的容量保持率。通过探究不同化成温度下(25℃和45℃)Li Ni1/3Co1/3Mn1/3O2/人造石墨电池的循环性能,结果显示不可逆容量损失从25℃的18.4%下降到45℃的10.5%。45℃高温化成有利于降低SEI膜阻抗和不可逆容量损失,1.077 m A/cm2大电流化成条件下的不可逆容量损失也仅为12.8%。同样在高温化成下具有更高的传输速率,一个更均匀的SEI膜可在石墨负极形成[17]。