《INTERPOLATION AND APPROXIMATION》
作者 | PHILIP J.DAVIS 编者 |
---|---|
出版 | BLAISDELL PUBLISHING COMPANY |
参考页数 | 393 |
出版时间 | 1963(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 88886868(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER ⅠINTRODUCTION1
1.1 Determinants1
1.2 Solution of Linear Systems of Equations2
1.3 Linear Vector Spaces3
1.4 The Hierarchy of Functions4
1.5 Functions Satisfying a Lipschitz Condition8
1.6 Differentiable Functions8
1.7 Infinitely Differentiable Functions11
1.8 Functions Analytic on the Line12
1.9 Functions Analytic in a Region12
1.10 Entire Functions15
1.11 Polynomials15
1.12 Linear Functionals and the Algebraic Conjugate Space16
1.13 Some Assorted Facts19
CHAPTER ⅡINTERPOLATION24
2.1 Polynomial Interpolation24
2.2 The General Problem of Finite Interpolation26
2.3 Systems Possessing the Interpolation Property27
2.4 Unisolvence31
2.5 Representation Theorems:The Lagrange Formula33
2.6 Representation Theorems:The Newton Formula39
2.7 Successive Differences50
CHAPTER ⅢREMAINDER THEORY56
3.1 The Cauchy Remainder for Polynomial Interpolation56
3.2 Convex Functions58
3.3 Best Real Error Estimates;The Tschebyscheff Polynomials60
3.4 Divided Differences and Mean Values64
3.5 Interpolation at Coincident Points66
3.6 Analytic Functions:Remainder for Polynomial Interpolation67
3.7 Peano’s Theorem and Its Consequences69
3.8 Interpolation in Linear Spaces;General Remainder Theorem75
CHAPTER ⅣCONVERGENCE THEOREMS FOR INTERPOLATORY PROCESSES78
4.1 Approximation by Means of Interpolation78
4.2 Triangular Interpolation Schemes79
4.3 A Convergence Theorem for Bounded Triangular Schemes81
4.4 Lemniscates and Interpolation83
CHAPTER VSOME PROBLEMS OF INFINITE INTERPOLATION95
5.1 Characteristics of Such Problems95
5.2 Guichard’s Theorem96
5.3 A Second Approach:Infinite Systems of Linear Equations in Infinitely Many Unknowns97
5.4 Applications of Pólya’s Theorem102
CHAPTER ⅥUNIFORM APPROXIMATION107
6.1 The Weierstrass Approximation Theorem107
6.2 The Bernstein Polynomials108
6.3 Simultaneous Approximation of Functions and Derivatives112
6.4 Approximation by Interpolation:Fejér’s Proof118
6.5 Simultaneous Interpolation and Approximation121
6.6 Generalizations of the Weierstrass Theorem122
CHAPTER ⅦBEST APPROXIMATION128
7.1 What is Best Approximation?128
7.2 Normed Linear Spaces129
7.3 Convex Sets134
7.4 The Fundamental Problem of Linear Approximation136
7.5 Uniqueness of Best Approximation140
7.6 Best Uniform (Tsehebyscheff) Approximation of Continuous Functions146
7.7 Best Approximation by Nonlinear Families152
CHAPTER ⅧLEAST SQUARE APPROXIMATION158
8.1 Inner Product Spaces158
8.2 Angle Geometry for Inner Product Spaces161
8.3 Orthonormal Systems163
8.4 Fourier (or Orthogonal) Expansions169
8.5 Minimum Properties of Fourier Expansions171
8.6 The Normal Equations175
8.7 Gram Matrices and Determinants176
8.8 Further Properties of the Gram Determinant184
8.9 Closure and Its Consequences188
8.10 Further Geometrical Properties of Complete Inner Product Spaces195
CHAPTER ⅨHILBERT SPACE201
9.1 Introduction201
9.2 Three Hilbert Spaces203
9.3 Bounded Linear Functionals in Normed Linear Spaces and in Hilbert Spaces214
9.4 Linear Varieties and Hyperplanes;Interpolation and Approximation in Hilbert Space225
CHAPTER ⅩORTHOGONAL POLYNOMIALS234
10.1 General Properties of Real Orthogonal Polynomials234
10.2 Complex Orthogonal Polynomials239
10.3 The Special Function Theory of the Jacobi Polynomials246
CHAPTER ⅪTHE THEORY OF CLOSURE AND COMPLETENESS257
11.1 The Fundamental Theorem of Closure and Completeness257
11.2 Completeness of the Powers and Trigonometric Systems for L2[a,b]265
11.3 The Müntz Closure Theorem267
11.4 Closure Theorems for Classes of Analytic Functions273
11.5 Closure Theorems for Normed Linear Spaces281
CHAPTER ⅫEXPANSION THEOREMS FOR ORTHOGONAL FUNCTIONS290
12.1 The Historical Fourier Series290
12.2 Fejér’s Theory of Fourier Series299
12.3 Fourier Series of Periodic Analytic Functions305
12.4 Convergence of the Legendre Series for Analytic Functions308
12.5 Complex Orthogonal Expansions314
12.6 Reproducing Kernel Functions316
CHAPTER ⅩⅢDEGREE OF APPROXIMATION328
13.1 The Measure of Best Approximation328
13.2 Degree of Approximation with Some Square Norms333
13.3 Degree of Approximation with Uniform Norm334
CHAPTER ⅩⅣAPPROXIMATION OF LINEAR FUNCTIONALS341
14.1 Rules and Their Determination341
14.2 The Gauss-Jacobi Theory of Approximate Integration342
14.3 Norms of Functionals as Error Estimates345
14.4 Weak Convergence346
APPENDIX363
Short Guide to Orthogonal Polynomials365
Table of the Tschebyscheff Polynomials369
Table of the Legendre Polynomials371
BIBLIOGRAPHY373
1963《INTERPOLATION AND APPROXIMATION》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由PHILIP J.DAVIS 1963 BLAISDELL PUBLISHING COMPANY 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- CARDINAL SPLINE INTERPOLATION
- 1973 SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
-
- ENGLISCHES TASCHENWORTERBUCH
- AXEL JUNCKER VERLAG·BERLIN
-
- American Mathematical Society Colloquium Publications Volume XX Interpolation and Approximation
- 1956 American Mathematical Society
-
- ERROR INEQUALITIES IN POLYNOMIAL INTERPOLATION AND THEIR APPLICATIONS
- 1993 KLUWER ACADEMIC PUBLISHERS
-
- Approximation theory and numerical methods
- 1980 J. Wiley
-
- Optimization and approximation
- 1979 Wiley
-
- Stochastic approximation and recursive estimation
- 1976 American Mathematical Society
-
- On approximation by Cesaro means of the Laguerre expansion and best approximation
- 1978 Rheinisch-Westfalische Technische Hochschule
-
- INTERPOLATION AND APPROXIMATION AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME XX
- 1956 THE AMERICAN MATHEMATICAL SOCIETY
-
- THE THEORY AND PRACTICE OF INTERPOLATION
- 1899 THE NICHOLS PRESS
-
- INTERPOLATION AND APPROXIMATION VOLUME XX
- 1956 AMERICAN MATHEMATICAL SOCIETY
-
- APPROXIMATION THEORY AND OPTIMIZATION
- 1997 UNIVERSITY PRESS
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD