《The Theory of Group Characters and Matrix Representations of Groups Second Edition》

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

Ⅰ.MATRICES1

1.1.Linear transformations1

1.2.Matrices2

1.3.The transform of a matrix4

1.4.Rectangular matrices and vectors5

1.5.The characteristic equation of a matrix6

1.6.The classical canonical form of a matrix7

1.7.The classical canonical form;multiple characteristic roots8

1.8.Various properties of matrices14

1.9.Unitary and orthogonal matrices15

Ⅱ.ALGEBRAS22

2.1.Definition of an algebra over the complex numbers22

2.2.Change of basis and the regular matrix representation23

2.3.Simple matrix algebras25

2.4.Examples of associative algebras25

2.5.Linear sets and sub-algebras26

2.6.Modulus,idempotent and nilpotent elements26

2.7.The reduced characteristic equation27

2.8.Reduction of an algebra relative to an idempotent29

2.9.The trace of an element31

Ⅲ.GROUPS32

3.1.Definition of a group32

3.2.Subgroups33

3.3.Examples of groups34

3.4.Permutation groups36

3.5.The alternating group37

3.6.Classes of conjugate elements38

3.7.Conjugate and self-conjugate subgroups40

3.8.The representations of an abstract group as a permutation group41

Ⅳ.THE FROBENIUS ALGEBRA43

4.1.Groups and algebras43

4.2.The group characters45

4.3.Matrix representations and group matrices48

4.4.Characteristic units56

4.5.The relations between the characters of a group and those of a subgroup57

Ⅴ.THE SYMMETRIC GROUP59

5.1.Partitions59

5.2.Frobenius's formula for the characters of the symmetric group61

5.3.Characters and lattices67

5.4.Primitive characteristic units and Young tableaux71

Ⅵ.IMMANANTS AND S-FUNCTIONS81

6.1.Immanants of a matrix81

6.2.Schur functions82

6.3.Properties of S-functions87

6.4.Generating functions and further properties of S-functions98

6.5.Relations between immanants and S-functions118

Ⅶ.S-FUNCTIONS OF SPECIAL SERIES122

7.1.The function φ(q,x)122

7.2.The functions (1-x)-n and (1-xr)-m126

7.3.S-functions associated with f(xr)131

Ⅷ.THE CALCULATION OF THE CHARACTERS OF THE SYMMETRIC GROUP137

8.1.Frobenius's formula137

S-functions of special series138

Recurrence relations140

Congruences142

Classes for which the orders of the cycles have a common factor143

Graphs and lattices146

Orthogonal properties146

Ⅸ.GROUP CHARACTERS AND THE STRUCTURE OF GROUPS147

9.1.The compound character associated with a subgroup147

9.2.Deduction of the characters of a subgroup from those of the group150

9.3.Determination of subgroups:necessary criteria that a compound character should correspond to a permutation representation of the group155

9.4.The properties of groups and character tables159

9.5.Transitivity164

9.6.Invariant subgroups171

Ⅹ.CONTINUOUS MATRIX GROUPS AND INVARIANT MATRICES178

10.1.Invariant matrices178

10.2.The classical canonical form of an invariant matrix193

10.3.Application to invariant theory203

Ⅺ.GROUPS OF UNITARY MATRICES210

11.1.Introductory210

11.2.Fundamental formula for integration over the group manifold211

11.3.Simplification of integration formulae for class functions217

11.4.Verification of the orthogonal properties of the characters of the unitary group222

11.5.Orthogonal matrices and the rotation groups223

11.6.Relations between the characters of D and D'225

11.7.Integration formulae connected with D and D'227

11.8.The characters of the orthogonal group233

11.9.Alternative forms for the characters of the orthogonal group238

11.10.The difference characters of the rotation group245

11.11.The spin representations of the orthogonal group248

11.12.Complex orthogonal matrices and groups of matrices with a quadratic invariant260

APPENDIX265

Tables of Characters of the Symmetric Groups265

Tables of Characters of Transitive Subgroups.Alternating Groups272

General Cyclic Group of Order n273

Other Transitive Subgroups273

Some Recent Developments285

BIBLIOGRAPHY301

SUPPLEMENTARY BIBLIOGRAPHY306

INDEX309

1950《The Theory of Group Characters and Matrix Representations of Groups Second Edition》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。

Enter Your Email
求助资料链接 (必填)
输入提取邮箱(必填)

访客求助条款:还望您仔细阅读以下条款,继续浏览或使用服务表示其均得到您的认可:



➊️ 条款:请支持正版图书。肯定和感激作者及出版商的社会贡献,以及国Jia在「教育公平」上作出的努力。

➋️️ 条款:向博主支付任何费用都意味着在访客的主观意识下雇佣博主,形成博主受雇于访客的劳务关系。

➌ 条款:严禁恶意雇佣博主处理违法、有伤民族感情、有违优良传统、安全法规之内容,雇方需承担相关后果。

➍ 条款:博主会对受雇之资料内容进行安全审查,故而请不要求助或发布任何不法内容,此类求助直接退款。

➎ 条款:通常2小时内完成求助,深夜的求助最迟第二天12点前,个别特别疑难的会提前告知在24小时内完成。

➏ 条款:若包含多册(如上、下册)每次求助仅受理一册,除非原本一本就包含上下册内容,而非分多本发行。

➐ 条款:因资料保存年代久远、或受当时印刷技术限制而可能导致的质量风险,求助者需明了并自行承担。

➑ 条款:雇佣博主为您从事资料处理服务是收费的,其设定参照了北京市 最低工资标准 时薪来推算。