《The Classical Groups Their Invariants and Representations》
作者 | Hermann Weyl 编者 |
---|---|
出版 | Princeton University Press |
参考页数 | 320 |
出版时间 | 1939(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 818131488(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER ⅠINTRODUCTION1
1.Fields,rings,ideals,polynomials1
2.Vector space6
3.Orthogonal transformations,Euclidean vector geometry11
4.Groups,Klein's Erlanger program.Quantities13
5.Invariants and covariants23
CHAPTER ⅡVECTOR INVARIANTS27
1.Remembrance of things past27
2.The main propositions of the theory of invariants29
A.FIRST MAIN THEOREM36
3.First example:the symmetric group36
4.Capelli's identity39
5.Reduction of the first main problem by means of Capelli's identities42
6.Second example:the unimodular group SL(n)45
7.Extension theorem.Third example:the group of step transformations47
8.A general method for including contravariant arguments49
9.Fourth example:the orthogonal group52
B.A CLOSE-UP OF THE ORTHOGONAL GROUP56
10.Cayley's rational parametrization of the orthogonal group56
11.Formal orthogonal invariants62
12.Arbitrary metric ground form65
13.The infinitesimal standpoint66
C.THE SECOND MAIN THEOREM70
14.Statement of the proposition for the unimodular group70
15.Capelli's formal congruence72
16.Proof of the second main theorem for the unimodular group73
17.The second main theorem for the unimodular group75
CHAPTER ⅢMATRIC ALGEBRAS AND GROUP RINGS79
A.THEORY OF FULLY REDUCIBLE MATRIC ALGEBRAS79
1.Fundamental notions concerning matric algebras.The Schur lemma79
2.Preliminaries84
3.Representations of a simple algebra87
4.Wedderburn'8 theorem90
5.The fully reducible matric algebra and its commutator algebra93
B.THE RING OF A FINITE GROUP AND ITS COMMUTATOR ALGEBRA96
6.Stating the problem96
7.Full reducibility of the group ring101
8.Formal lemmas106
9.Reciprocity between group ring and commutator algebra107
10.A generalization112
CHAPTER ⅣTHE SYMMETRIC GROUP AND THE FULL LINEAR GROUP115
1.Representation of a finite group in an algebraically closed field115
2.The Young symmetrizers.A combinatorial lemma119
3.The irreducible representations of the symmetric group124
4.Decomposition of tensor space127
5.Quantities.Expansion131
CHAPTER ⅤTHE ORTHOGONAL GROUP137
A.THE ENVELOPING ALGEBRA AND THE ORTHOGONAL IDEAL137
1.Vector invariants of the unimodular group again137
2.The enveloping algebra of the orthogonal group140
3.Giving the result its formal setting143
4.The orthogonal prime ideal144
5.An abstract algebra related to the orthogonal group147
B.THE IRREDUCIBLE REPRESENTATIONS149
6.Decomposition by the trace operation149
7.The irreducible representations of the full orthogonal group153
C.THE PROPER ORTHOGONAL GROUP159
8.Clifford's theorem159
9.Representations of the proper orthogonal group163
CHAPTER ⅥTHE 8YMPLECTIC GROUP165
1.Vector invariants of the symplectic group165
2.Parametrization and unitary restriction169
3.Embedding algebra and representations of the symplectic group173
CHAPTER ⅦCHARACTERS176
1.Preliminaries about unitary transformations176
2.Character for symmetrization or alternation alone181
3.Averaging over a group185
4.The volume element of the unitary group194
5.Computation of the characters198
6.The characters of GL(n).Enumeration of covariants201
7.A purely algebraic approach208
8.Characters of the symplectic group216
9.Characters of the orthogonal group222
10.Decomposition and X-multiplication229
11.The Poincaré polynomial232
CHAPTER ⅧGENERAL THEORY OF INVARIANTS239
A.ALGEBRAIC PART239
1.Classic invariants and invariants of qualities.Gram's theorem239
2.The symbolic method243
3.The binary quadratic246
4.Irrational methods248
5.Side remarks250
6.Hilbert's theorem on polynomial ideals251
7.Proof of the first main theorem for GL(n)252
8.The adjunction argument254
B.DIFFERENTIAL AND INTEGRAL METHODS258
9.Group germ and Lie algebras258
10.Differential equations for invariants.Absolute and relative invariants262
11.The unitarian trick265
12.The connectivity of the classical groups268
13.Spinors270
14.Finite integrity basis for invariants of compact groups274
15.The first main theorem for finite groups275
16.Invariant differentials and Betti numbers of a compact Lie group276
CHAPTER ⅨMATRIC ALGEBRAS RESUMED280
1.Automorphisms280
2.A lemma on multiplication283
3.Products of simple algebras286
4.Adjunction288
CHAPTER ⅩSUPPLEMENTS291
A.SUPPLEMENT TO CHAPTER II,9-13,AND CHAPTER VI,1,CONCERNING INFINITESIMAL VECTOR INVARIANTS291
1.An identity for infinitesimal orthogonal invariants291
2.First Main Theorem for the orthogonal group293
3.The same for the symplectic group294
B.SUPPLEMENT TO CHAPTER V,3,AND CHAPTER VI,2 AND 3,CONCERNING THE SYMPLECTIC AND ORTHOGONAL IDEALS295
4.A proposition on full reduction295
5.The symplectic ideal296
6.The full and the proper orthogonal? ideals299
C.SUPPLEMENT TO CHAPTER VIII,7-8,CONCERNING.300
7.A modified proof of the main theorem on invariants300
D.SUPPLEMENT TO CHAPTER IX,4,ABOUT EXTENSION OF THE GROUND FIELD303
8.Effect of field extension on a division algebra303
ERRATA AND ADDENDA307
BIBLIOGRAPHY308
SUPPLEMENTARY BIBLIOGRAPHY,MAINLY FOR THE YEARS 1940-1945314
INDEX317
1939《The Classical Groups Their Invariants and Representations》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由Hermann Weyl 1939 Princeton University Press 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- Clifford algebras and the classical groups
- 1995 Cambridge University Press
-
- INVARIANT MEANS ON TOPOLOGICAL GROUPS AND THEIR APPLICATIONS
- 1969 VAN NOSTRAND REINHOLD COMPANY
-
- Discontinuous Subgroups of Classical Groups
- 1958 The University of Chicago
-
- QUANTUM GROUPS AND THEIR PRIMITIVE IDEALS
- 1995 SPRINGER-VERLAG
-
- REPRESENTATIONS OF SOLVABLE GROUPS
- 1993 CAMBRIDGE UNIVERSITY PRESS
-
- Representations of real reductive Lie groups
- 1981 Birkh user Boston
-
- Representations of Compact Lie Groups
- 1985 Springer Berlin Heidelberg
-
- Representations of finite Chevalley groups : a survey
- 1979 Springer-Verlag
-
- Group theory and general relativity : representations of the Lorentz group and their applications to
- 1977 McGraw-Hill
-
- REPRESENTATIONS OF ALGEBRAIC GROUPS
- 1987 ACADEMIC PRESS INC
-
- Representations of Nilpotent Lie Groups and Their Applications Part I: Basic Theory and Examples
- 1990 Cambridge University Press
-
- Representations of Reductive Groups
- 1998 Cambridge University Press
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD