《加速器物理学 第2版 英文影印版》求取 ⇩

1Introduction1

Historical Developments4

Ⅰ.1 Natural Accelerators5

Ⅰ.2 Electrostatic Accelerators6

Ⅰ.3 Induction Accelerators6

Ⅰ.4 Radio-Frequency(RF)Accelerators9

Ⅰ.5 Colliders and Storage Rings17

Ⅰ.6 Synchrotron Radiation Storage Rings18

Layout and Components of Accelerators19

Ⅱ.1 Acceleration Cavities19

Ⅱ.2 Accelerator Magnets20

Ⅱ.3 Other Important Components22

Accelerator Applications23

Ⅲ.1 High Energy and Nuclear Physics23

Ⅲ.2 Solid-State and Condensed-Matter Physics24

Ⅲ.3 Other Applications24

Exercise24

2Transverse Motion35

Hamiltonian for Particle Motion in Accelerators36

Ⅰ.1 Hamiltonian in Frenet-Serret Coordinate System37

Ⅰ.2 Magnetic Field in Frenet-Serret Coordinate System39

Ⅰ.3 Equation of Betatron Motion41

Ⅰ.4 Particle Motion in Dipole and Quadrupole Magnets41

Exercise42

Linear Betatron Motion47

Ⅱ.1 Transfer Matrix and Stability of Betatron Motion47

Ⅱ.2 Courant-Snyder Parametrization51

Ⅱ.3 Floquet Transformation52

Ⅱ.4 Action-Angle Variable and Floquet Transformation57

Ⅱ.5 Courant-Snyder Invariant and Emittance60

Ⅱ.6 Stability of Betatron Motion:A FODO Cell Example65

Ⅱ.7 Symplectic Condition66

Ⅱ.8 Effect of Space-Charge Force on Betatron Motion67

Exercise73

Effect of Linear Magnet Imperfections85

Ⅲ.1 Closed-Orbit Distortion due to Dipole Field Errors85

Ⅲ.2 Extended Matrix Method for the Closed Orbit91

Ⅲ.3 Application of Dipole Field Error92

Ⅲ.4 Quadrupole Field(Gradient)Errors101

Ⅲ.5 Basic Beam Observation of Transverse Motion105

Ⅲ.6 Application of quadrupole field error108

Ⅲ.7 Transverse Spectra110

Ⅲ.8 Beam Injection and Extraction115

Ⅲ.9 Mechanisms of emittance dilution and diffusion117

Exercise121

Off-Momentum Orbit129

Ⅳ.1 Dispersion Function129

Ⅳ.2 H-Function,Action,and Integral Representation133

Ⅳ.3 Momentum Compaction Factor136

Ⅳ.4 Dispersion Suppression and Dispersion Matching139

Ⅳ.5 Achromat Transport Systems141

Ⅳ.6 Transport Notation143

Ⅳ.7 Experimental Measurements of Dispersion Function145

Ⅳ.8Transition Energy Manipulation146

A.γT jump schemes146

B.Flexible momentum compaction(FMC)lattices149

C.Other similar FMC modules155

D.FMC in double-bend(DB)lattices156

Ⅳ.9 Minimum〈H〉Modules157

Exercise161

Chromatic Aberration172

Ⅴ.1 Chromaticity Measurement and Correction173

Ⅴ.2 Nonlinear Effects of Chromatic Sextupoles178

Ⅴ.3 Chromatic Aberration and Correction178

Ⅴ.4 Lattice Design Strategy183

Exercise184

Linear Coupling186

Ⅵ.1 The Linear Coupling Hamiltonian186

Ⅵ.2 Effects of an isolated Linear Coupling Resonance189

Ⅵ.3 Experimental Measurement of Linear Coupling193

Ⅵ.4 Linear Coupling Correction with Skew Quadrupoles196

Ⅵ.5 Linear Coupling Using Transfer Matrix Formalism197

Exercise197

Nonlinear Resonances202

Ⅶ.1 Nonlinear Resonances Driven by Sextupoles202

Ⅶ.2 Higher-Order Resonances209

Ⅶ.3 Nonlinear Detuning from Sextupoles211

Ⅶ.4 Betatron Tunes and Nonlinear Resonances212

Exercise213

Collective Instabilities and Landau Damping216

Ⅷ.1 Impedance216

Ⅷ.2 Transverse Wave Modes220

Ⅷ.3 Effect of Wakefield on Transverse Wave221

Ⅷ.4 Frequency Spread and Landau Damping225

Exercise228

Ⅸ Synchro-Betatron Hamiltonian232

Exercise237

3Synchrotron Motion239

Longitudinal Equation of Motion240

Ⅰ.1 The Synchrotron Hamiltonian244

Ⅰ.2 The Synchrotron Mapping Equation245

Ⅰ.3 Evolution of Synchrotron Phase-Space Ellipse246

Ⅰ.4 Some Practical Examples247

Ⅰ.5 Summary of Synchrotron Equations of Motion248

Exercise249

Adiabatic Synchrotron Motion251

Ⅱ.1 Fixed Points252

Ⅱ.2 Bucket Area253

Ⅱ.3 Small-Amplitude Oscillations and Bunch Area255

Ⅱ.4 Small-Amplitude Synchrotron Motion at the UFP258

Ⅱ.5 Synchrotron Motion for Large-Amplitude Particles259

Ⅱ.6 Experimental Tracking of Synchrotron Motion261

Exercise263

RF Phase and Voltage Modulations268

Ⅲ.1 Normalized Phase-Space Coordinates268

Ⅲ.2 RF Phase Modulation and Parametric Resonances271

Ⅲ.3 Measurements of Synchrotron Phase Modulation277

Ⅲ.4 Effects of Dipole Field Modulation280

Ⅲ.5 RF Voltage Modulation288

Ⅲ.6 Measurement of RF Voltage Modulation295

Exercise297

Nonadiabatic and Nonlinear Synchrotron Motion301

Ⅳ.1 Linear Synchrotron Motion Near Transition Energy302

Ⅳ.2 Nonlinear Synchrotron Motion at γ≈γT305

Ⅳ.3 Beam Manipulation Near Transition Energy308

Ⅳ.4 Synchrotron Motion with Nonlinear Phase Slip Factor309

Ⅳ.5 The QI Dynamical Systems312

Exercise315

Beam Manipulation in Synchrotron Phase Space317

Ⅴ.1 RF Frequency Requirements318

Ⅴ.2 Capture and Acceleration of Proton and Ion Beams320

Ⅴ.3 Bunch Compression and Rotation322

Ⅴ.4 Debunching326

Ⅴ.5 Beam Stacking and Phase Displacement Acceleration326

Ⅴ.6 Double rf Systems327

Ⅴ.7 The Barrier RF Bucket334

Exercise340

Fundamentals of RF Systems343

Ⅵ.1 Pillbox Cavity343

Ⅵ.2 Low Frequency Coaxial Cavities345

Ⅵ.3 Beam Loading353

Ⅵ.4 Beam Loading Compensation and Robinson Instability356

Exercise359

Longitudinal Collective Instabilities362

Ⅶ.1 Longitudinal Spectra363

Ⅶ.2 Collective Microwave Instability in Coasting Beams367

Ⅶ.3 Longitudinal Impedance369

Ⅶ.4 Microwave Single Bunch Instability373

Exercise381

Introduction to Linear Accelerators383

Ⅷ.1 Historical Milestones383

Ⅷ.2Fundamental Properties of Accelerating Structures387

A.Transit time factor387

B.Shunt impedance388

C.The quality factor Q388

Ⅷ.3Particle Acceleration by EM Waves389

A.EM waves in a cylindrical wave guide390

B.Phase velocity and group velocity391

C.TM modes in a cylindrical pillbox cavity392

D.Alvarez structure395

E.Loaded wave guide chain and the space harmonics396

F.Standing wave,traveling wave,and coupled cavity linacs399

G.HOMs401

Ⅷ.4 Longitudinal Particle Dynamics in a Linac402

Ⅷ.5 Transverse Beam Dynamics in a Linac407

Exercise410

4Physics of Electron Storage Rings417

Fields of a Moving Charged Particle422

Ⅰ.1 Non-relativistic Reduction424

Ⅰ.2 Radiation Field for Particles at Relativistic Velocities424

Ⅰ.3 Frequency and Angular Distribution427

Ⅰ.4 Quantum Fluctuation433

Exercise435

Radiation Damping and Excitation437

Ⅱ.1 Damping of Synchrotron Motion438

Ⅱ.2 Damping of Betatron Motion441

Ⅱ.3 Damping Rate Adjustment445

Ⅱ.4 Radiation Excitation and Equilibrium Energy Spread448

Ⅱ.5 Radial Bunch Width and Distribution Function453

Ⅱ.6 Vertical Beam Width455

Ⅱ.7 Radiation Integrals456

Ⅱ.8 Beam Lifetime456

Exercise462

Emittance in Electron Storage Rings466

Ⅲ.1Emittance of Synchrotron Radiation Lattices467

A.FODO cell lattice467

B.Double-bend achromat(Chasman-Green lattice)469

C.Minimum〈H〉-function lattice473

D.Minimizing emittance in a combined function DBA475

E.Three-bend achromat476

Ⅲ.2 Insertion Devices478

Ⅲ.3 Beam Physics of High Brightness Storage Rings486

Exercise489

5Special Topics in Beam Physics497

Free Electron Laser(FEL)498

Ⅰ.1 Small Signal Regime500

Ⅰ.2 Interaction of the Radiation Field with the Beam506

Ⅰ.3 Experiments on High Gain FEL Generation509

Exercise510

Beam-Beam Interaction513

Ⅱ.1 The beam-beam force517

Ⅱ.2 The Coherent Beam-Beam Effects519

Ⅱ.3 Nonlinear Beam-Beam Effects521

Ⅱ.4 Experimental Observations and Numerical Simulations522

Ⅱ.5 Beam-Beam Interaction in Linear Colliders525

Exercise527

A Basics of Classical Mechanics533

Hamiltonian Dynamics533

Ⅰ.1 Canonical Transformations533

Ⅰ.2 Fixed Points534

Ⅰ.3 Poisson Bracket534

Ⅰ.4 Liouville Theorem535

Ⅰ.5 Floquet Theorem536

Stochastic Beam Dynamics537

Ⅱ.1 Central Limit Theorem537

Ⅱ.2 Langevin Equation of Motion538

Ⅱ.3 Stochastic Integration Methods539

Ⅱ.4 Fokker-Planck Equation541

B Numerical Methods and Physical Constants543

Fourier Transform543

Ⅰ.1 Nyquist Sampling Theorem544

Ⅰ.2 Discrete Fourier Transform544

Ⅰ.3 Digital Filtering545

Ⅰ.4 Some Simple Fourier Transforms546

Model Independent Analysis546

Ⅱ.1 Model Independent Analysis547

Ⅱ.2 Independent Component Analysis548

Ⅱ.3 Accelerator Modeling549

Cauchy Theorem and the Dispersion Relation549

Ⅲ.1 Cauchy Integral Formula549

Ⅲ.2 Dispersion Relation550

Useful Handy Formulas551

Ⅳ.1 Generating functions for the Bessel functions551

Ⅳ.2 The Hankel transform551

Ⅳ.3 The complex error function551

Ⅳ.4 A multipole expansion formula552

Ⅳ.5 Cylindrical Coordinates552

Ⅳ.6 Gauss'and Stokes'theorems553

Ⅳ.7 Vector Operation553

Maxwell's equations553

Ⅴ.1 Lorentz Transformation of EM fields554

Ⅴ.2 Cylindrical waveguides554

Ⅴ.3 Voltage Standing Wave Ratio556

Ⅵ Physical Properties and Constants557

Bibliography561

Index563

Symbols and Notations571

《加速器物理学 第2版 英文影印版》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由(美)S.Y.Lee著 上海:复旦大学出版社 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。