《fundamentals of heat and mass transfer fifth edition P985》求取 ⇩

CHAPTER1Introduction2

1.1 What and How?2

1.2Physical Origins and Rate Equations3

1.2.1 Conduction3

1.2.2 Convection6

1.2.3 Radiation9

1.2.4 Relationship to Thermodynamics12

1.3The Conservation of Energy Requirement13

1.3.1 Conservation of Energy for a Control Volume13

1.3.2 The Surface Energy Balance21

1.3.3 Application of the Conservation Laws: Methodology24

1.4 Analysis of Heat Transfer Problems: Methodology24

1.5 Relevance of Heat Transfer27

1.6 Units and Dimensions28

1.7 Summary31

Problems34

CHAPTER2Introduction to Conduction51

2.1 The Conduction Rate Equation52

2.2The Thermal Properties of Matter54

2.2.1 Thermal Conductivity54

2.2.2 Other Relevant Properties58

2.3 The Heat Diffusion Equation61

2.4 Boundary and Initial Conditions68

2.5 Summary72

References73

Problems73

CHAPTER3One-Dimensional, Steady-State Conduction87

3.1The Plane Wall88

3.1.1 Temperature Distribution88

3.1.2 Thermal Resistance90

3.1.3 The Composite Wall91

3.1.4 Contact Resistance93

3.2 An Alternative Conduction Analysis101

3.3Radial Systems104

3.3.1 The Cylinder105

3.3.2 The Sphere110

3.4 Summary of One-Dimensional Conduction Results114

3.5Conduction with Thermal Energy Generation114

3.5.1 The Plane Wall115

3.5.2 Radial Systems121

3.5.3 Application of Resistance Concepts126

3.6Heat Transfer from Extended Surfaces126

3.6.1 A General Conduction Analysis128

3.6.2 Fins of Uniform Cross-Sectional Area130

3.6.3 Fin Performance136

3.6.4 Fins of Nonuniform Cross-Sectional Area139

3.6.5 Overall Surface Efficiency140

3.7 Summary149

References152

Problems152

CHAPTER4Two-Dimensional, Steady-State Conduction183

4.1 Alternative Approaches184

4.2 The Method of Separation of Variables185

4.3The Graphical Method189

4.3.1 Methodology of Constrncting a Flux Plot190

4.3.2 Determination of the Heat Transfer Rate191

4.3.3 The Conduction Shape Factor192

4.4Finite-Difference Equations196

4.4.1 The Nodal Network196

4.4.2 Finite-Difference Form of the Heat Equation197

4.4.3 The Energy Balance Method198

4.5Finite-Difference Solutions205

4.5.1 The Matrix Inversion Method206

4.5.2 Gauss-Seidel Iteration207

4.5.3 Some Precautions213

4.6 Summary218

References219

Problems219

CHAPTER5Transient Conduction239

5.1 The Lumped Capacitance Method240

5.2 Validity of the Lumped Capacitance Method243

5.3 General Lumped Capacitance Analysis247

5.4 Spatial Effects254

5.5The Plane Wall with Convection256

5.5.1 Exact Solution256

5.5.2 Approximate Solution257

5.5.3 Total Energy Transfer258

5.5.4 Additional Considerations259

5.6Radial Systems with Convection260

5.6.1 Exact Solutions260

5.6.2 Approximate Solutions261

5.6.3 Total Energy Transfer261

5.6.4 Additional Considerations262

5.7 The Semi-Infinite Solid268

5.8 Multidimensional Effects274

5.9Finite-Difference Methods280

5.9.1 Discretization of the Heat Equation: The Explicit Method280

5.9.2 Discretization of the Heat Equation: The Implicit Method288

5.10 Summary296

References297

Problems297

CHAPTER6Introduction to Convection325

6.1 The Convection Transfer Problem326

6.2The Convection Boundary Layers331

6.2.1 The Velocity Boundary Layer331

6.2.2 The Thermal Boundary Layer332

6.2.3 The Concentration Boundary Layer333

6.2.4 Significance of the Boundary Layers335

6.3 Laminar and Turbulent Flow336

6.4Boundary Layer Equations338

6.4.1 The Convection Transfer Equations339

6.4.2 The Boundary Layer Approximations344

6.5Boundary Layer Similarity: The Normalized Boundary Layer Equations346

6.5.1 Boundary Layer Similarity Parameters346

6.5.2 Functional Form of the Solutions348

6.6 Physical Significance of the Dimensionless Parameters353

6.7Boundary Layer Analogies356

6.7.1 The Heat and Mass Transfer Analogy356

6.7.2 Evaporative Cooling360

6.7.3 The Reynolds Analogy363

6.8 The Effects of Turbulence364

6.9 The Convection Coefficients367

6.10 Summary368

References369

Problems369

CHAPTER7External Flow385

7.1 The Empirical Method387

7.2The Flat Plate in Parallel Flow389

7.2.1 Laminar Flow: A Similarity Solution389

7.2.2 Turbulent Flow395

7.2.3 Mixed Boundary Layer Conditions396

7.2.4 Special Cases397

7.3 Methodology for a Convection Calculation399

7.4The Cylinder in Cross Flow401

7.4.1 Flow Considerations407

7.4.2 Convection Heat and Mass Transfer409

7.5 The Sphere415

7.6 Flow Across Banks of Tubes418

7.7Impinging Jets428

7.7.1 Hydrodynamic and Geometric Considerations428

7.7.2 Convection Heat and Mass Transfer430

7.8 Packed Beds434

7.9 Summary435

References437

Problems438

CHAPTER8Internal Flow465

8.1Hydrodynamic Considerations466

8.1.1 Flow Conditions466

8.1.2 The Mean Velocity467

8.1.3 Velocity Profile in the Fully Developed Region468

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow470

8.2Thermal Considerations471

8.2.1 The Mean Temperature472

8.2.2 Newton's Law of Cooling473

8.2.3 Fully Developed Conditions473

8.3The Energy Balance477

8.3.1 General Considerations477

8.3.2 Constant Surface Heat Flux478

8.3.3 Constant Surface Temperature481

8.4Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations485

8.4.1 The Fully Developed Region485

8.4.2 The Entry Region489

8.5 Convection Correlations: Turbulent Flow in Circular Tubes491

8.6 Convection Correlations: Noncircular Tubes495

8.7 The Concentric Tube Annulus500

8.8 Heat Transfer Enhancement502

8.9 Convection Mass Transfer503

8.10 Summary506

References509

Problems509

CHAPTER9Free Convection533

9.1 Physical Considerations534

9.2 The Governing Equations537

9.3 Similarity Considerations539

9.4 Laminar Free Convection on a Vertical Surface540

9.5 The Effects of Turbulence542

9.6Empirical Correlations: External Free Convection Flows545

9.6.1 The Vertical Plate545

9.6.2 Inclined and Horizontal Plates548

9.6.3 The Long Horizontal Cylinder554

9.6.4 Spheres557

9.7Free Convection within Parallel Plate Channels558

9.7.1 Vertical Channels559

9.7.2 Inclined Channels561

9.8Empirical Correlations: Enclosures561

9.8.1 Rectangular Cavities561

9.8.2 Concentric Cylinders564

9.8.3 Concentric Spheres565

9.9 Combined Free and Forced Convection567

9.10 Convection Mass Transfer568

9.11 Summary569

References570

Problems572

CHAPTER10Boiling and Condensation593

10.1 Dimensionless Parameters in Boiling and Condensation594

10.2 Boiling Modes595

10.3Pool Boiling596

10.3.1 The Boiling Curve596

10.3.2 Modes of Pool Boiling598

10.4Pool Boiling Correlations601

10.4.1 Nucleate Pool Boiling602

10.4.2 Critical Heat Flux for Nucleate Pool Boiling603

10.4.3 Minimum Heat Flux603

10.4.4 Film Pool Boiling604

10.4.5 Parametric Effects on Pool Boiling605

10.5Forced-Convection Boiling610

10.5.1 External Forced-Convection Boiling611

10.5.2 Two-Phase Flow611

10.6 Condensation: Physical Mechanisms613

10.7 Laminar Film Condensation on a Vertical Plate615

10.8 Turbulent Film Condensation619

10.9 Film Condensation on Radial Systems623

10.10 Film Condensation in Horizontal Tubes626

10.11 Dropwise Condensation627

10.12 Summary627

References628

Problems630

CHAPTER11Heat Exchangers641

11.1 Heat Exchanger Types642

11.2 The Overall Heat Transfer Coefficient645

11.3Heat Exchanger Analysis: Use of the Log Mean Temperature Difference647

11.3.1 The Parallel-Flow Heat Exchanger648

11.3.2 The Counterflow Heat Exchanger651

11.3.3 Special Operating Conditions652

11.3.4 Multipass and Cross-Flow Heat Exchangers652

11.4Heat Exchanger Analysis: The Effectiveness-NTU Method659

11.4.1 Definitions660

11.4.2 Effectiveness-NTU Relations661

11.5 Methodology of a Heat Exchanger Calculation668

11.6 Compact Heat Exchangers674

11.7 Summary679

References680

Problems681

CHAPTER12Radiation: Processes and Properties699

12.1 Fundamental Concepts700

12.2Radiation Intensity703

12.2.1 Definitions703

12.2.2 Relation to Emission706

12.2.3 Relation to Irradiation709

12.2.4 Relation to Radiosity711

12.3Blackbody Radiation712

12.3.1 The Planck Distribution713

12.3.2 Wien's Displacement Law713

12.3.3 The Stefan-Boltzmann Law714

12.3.4 Band Emission715

12.4 Sufrace Emission720

12.5Surface Absorption, Reflection, and Transmission728

12.5.1 Absorptivity730

12.5.2 Reflectivity731

12.5.3 Transmissivity732

12.5.4 Special Considerations733

12.6 Kirchhoff s Law738

12.7 The Gray Surface740

12.8 Environmental Radiation746

12.9 Summary752

References756

Problems756

CHAPTER13Radiation Exchange Between Surfaces789

13.1The View Factor790

13.1.1 The View Factor Integral790

13.1.2 View Factor Relations791

13.2 Blackbody Radiation Exchange800

13.3Radiation Exchange Between Diffuse, Gray Surfaces in an Enclosure803

13.3.1 Net Radiation Exchange at a Surface803

13.3.2 Radiation Exchange Between Surfaces805

13.3.3 The Two-Surface Enclosure810

13.3.4 Radiation Shields812

13.3.5 The Reradiating Surface814

13.4 Multimode Heat Transfer818

13.5Additional Effects821

13.5.1 Volumetric Absorption822

13.5.2 Gaseous Emission and Absorption822

13.6 Summary827

References828

Problems828

CHAPTER14Diffusion Mass Transfer859

14.1Physical Origins and Rate Equations860

14.1.1 Physical Origins860

14.1.2 Mixture Composition861

14.1.3 Fick's Law of Diffusion862

14.1.4 Restrictive Conditions863

14.1.5 Mass Diffusion Coefficient867

14.2Conservation of Species867

14.2.1 Conservation of Species for a Control Volume868

14.2.2 The Mass Diffusion Equation868

14.3 Boundary and Initial Conditions871

14.4Mass Diffusion Without Homogeneous Chemical Reactions874

14.4.1 Stationary Media with Specified Surface Concentrations875

14.4.2 Stationary Media with Catalytic Surface Reactions878

14.4.3 Equimolar Counterdiffusion881

14.4.4 Evaporation in a Column884

14.5 Mass Diffusion with Homogeneous Chemical Reactions886

14.6 Transient Diffusion889

14.7 Summary893

References894

Problems895

APPENDIXAThermophysical Properties of Matter903

APPENDIXBMathematical Relations and Functions933

APPENDIXCThermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems939

APPENDIXDGraphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere947

APPENDIXEThe Convection Transfer Equations953

E.1 Conservation of Mass954

E.2 Newton's Second Law of Motion955

E.3 Conservation of Energy958

E.4 Conservation of Species961

APPENDIXFArt Integral Laminar Boundary Layer Solution for Parallel Flow Over a Flat Plate963

Index969

《fundamentals of heat and mass transfer fifth edition P985》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,博主可为大家寻取其电子版PDF文件,有需要的可以向博主求助,我会及时受理并将完整页PDF电子档下载地址发送给你。