《FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITION》求取 ⇩

CHAPTER 1Essential Concepts1

1.1What and How?2

1.2Physical Origins and Rate Equations3

1.2.1 Conduction3

1.2.2 Convection6

1.2.3 Radiation9

1.2.4 Relationship to Thermodynamics12

1.3The Conservation of Energy Requirement13

1.3.1 Conservation of Energy for a Control Volume13

1.3.2 The Surface Energy Balance25

1.3.3 Application of the Conservation Laws:Methodology28

1.4 Analysis of Heat Transfer Problems: Methodology29

1.5 Relevance of Heat Transfer32

1.6 Units and Dimensions35

1.7Summary38

References41

Problems41

CHAPTER 2Fundamental Concepts of Conduction57

2.1The Conduction Rate Equation58

2.2The Thermal Properties of Matter60

2.2.1 Thermal Conductivity60

2.2.2 Other Relevant Properties67

2.3 The Heat Diffusion Equation70

2.4 Boundary and Initial Conditions77

2.5Summary81

References82

Problems82

CHAPTER 3Steady-State, One-Dimensional Conduction95

3.1The Plane Wall96

3.1.1 Temperature Distribution96

3.1.2 Thermal Resistance98

3.1.3 The Composite Wall99

3.1.4 Contact Resistance101

3.2 An Alternative Conduction Analysis112

3.3Radial Systems116

3.3.1 The Cylinder116

3.3.2 The Sphere122

3.4 Summary of One-Dimensional Conduction Results125

3.5Conduction with Thermal Energy Generation126

3.5.1 The Plane Wall127

3.5.2 Radial Systems132

3.5.3 Application of Resistance Concepts137

3.6Heat Transfer from Extended Surfaces137

3.6.1 A General Conduction Analysis139

3.6.2 Fins of Uniform Cross-Sectional Area141

3.6.3 Fin Performance147

3.6.4 Fins of Nonuniform Cross-Sectional Area150

3.6.5 Overall Surface Efficiency153

3.7 The Bioheat Equation162

3.8Summary166

References168

Problems169

CHAPTER 4Steady-State, Multi-Dimensional Conduction201

4.1Alternative Approaches202

4.2 The Method of Separation of Variables203

4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate207

4.4Finite-Difference Equations212

4.4.1 The Nodal Network213

4.4.2 Finite-Difference Form of the Heat Equation214

4.4.3 The Energy Balance Method215

4.5Solving the Finite-Difference Equations222

4.5.1 The Matrix Inversion Method222

4.5.2 Gauss-SeidelIteration223

4.5.3 Some Precautions229

4.6Summary234

References235

Problems235

CHAPTER 5Time-Dependent Conduction255

5.1The Lumped Capacitance Method256

5.2 Validity of the Lumped Capacitance Method259

5.3 General Lumped Capacitance Analysis263

5.4 Spatial Effects270

5.5The Plane Wall with Convection272

5.5.1 Exact Solution272

5.5.2 Approximate Solution273

5.5.3 Total Energy Transfer274

5.5.4 Additional Considerations275

5.6Radial Systems with Convection276

5.6.1 Exact Solutions276

5.6.2 Approximate Solutions277

5.6.3 Total Energy Transfer277

5.6.4 Additional Considerations278

5.7 The Semi-Infinite Solid283

5.8Objects with Constant Surface Temperatures or Surface Heat Fluxes290

5.8.1 Constant Temperature Boundary Conditions290

5.8.2 Constant Heat Flux Boundary Conditions292

5.8.3 Approximate Solutions293

5.9 Periodic Heating299

5.10 Finite-Difference Methods302

5.10.1Discretization of the Heat Equation: The Explicit Method302

5.10.2 Discretization of the Heat Equation: The Implicit Method310

5.11 Summary317

References319

Problems319

CHAPTER 6Fundamental Concepts of Convection347

6.1The Convection Boundary Layers348

6.1.1 The Velocity Boundary Layer348

6.1.2 The Thermal Boundary Layer349

6.1.3 The Concentration Boundary Layer350

6.1.4 Significance of the Boundary Layers352

6.2Local and Average Convection Coefficients352

6.2.1 Heat Transfer352

6.2.2 Mass Transfer353

6.2.3 The Problem of Convection355

6.3Laminar and Turbulent Flow359

6.3.1 Laminar and Turbulent Velocity Boundary Layers359

6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers361

6.4The Boundary Layer Equations364

6.4.1 Boundary Layer Equations for Laminar Flow365

6.5Boundary Layer Similarity: The Normalized Boundary Layer Equations367

6.5.1 Boundary Layer Similarity Parameters368

6.5.2 Functional Form of the Solutions368

6.6 Physical Significance of the Dimensionless Parameters374

6.7Boundary Layer Analogies377

6.7.1 The Heat and Mass Transfer Analogy377

6.7.2 Evaporative Cooling381

6.7.3 The Reynolds Analogy384

6.8 The Convection Coefficients385

6.9Summary385

References386

Problems387

CHAPTER 7External Forced Convection401

7.1The Empirical Method403

7.2The Flat Plate in Parallel Flow405

7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution405

7.2.2 Turbulent Flow over an Isothermal Plate410

7.2.3 Mixed Boundary Layer Conditions411

7.2.4 Unheated Starting Length412

7.2.5 Flat Plates with Constant Heat Flux Conditions413

7.2.6 Limitations on Use of Convection Coefficients414

7.3 Methodology for a Convection Calculation414

7.4The Cylinder in Cross Flow423

7.4.1 Flow Considerations423

7.4.2 Convection Heat and Mass Transfer425

7.5 The Sphere433

7.6 Flow Across Banks of Tubes436

7.7Impinging Jets447

7.7.1 Hydrodynamic and Geometric Considerations447

7.7.2 Convection Heat and Mass Transfer449

7.8 Packed Beds452

7.9Summary454

References456

Problems457

CHAPTER 8Internal Forced Convection485

8.1Hydrodynamic Considerations486

8.1.1 Flow Conditions486

8.1.2 The Mean Velocity487

8.1.3 Velocity Profile in the Fully Developed Region488

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow490

8.2Thermal Considerations491

8.2.1 The Mean Temperature492

8.2.2 Newton’s Law of Cooling493

8.2.3 Fully Developed Conditions493

8.3The Energy Balance497

8.3.1 General Considerations497

8.3.2 Constant Surface Heat Flux498

8.3.3 Constant Surface Temperature501

8.4Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations505

8.4.1 The Fully Developed Region505

8.4.2 The Entry Region512

8.5 Convection Correlations: Turbulent Flow in Circular Tubes514

8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus518

8.7 Heat Transfer Enhancement521

8.8 Microscale Internal Flow524

8.8.1 Flow Conditions in Microscale Internal Flow524

8.8.2 Thermal Considerations in Microscale Internal Flow525

8.9 Convection Mass Transfer528

8.10 Summary531

References533

Problems534

CHAPTER 9Natural Convection559

9.1 Physical Considerations560

9.2 The Governing Equations563

9.3 Similarity Considerations564

9.4 Laminar Free Convection on a Vertical Surface566

9.5 The Effects of Turbulence568

9.6 Empirical Correlations: External Free Convection Flows571

9.6.1 The Vertical Plate571

9.6.2 Inclined and Horizontal Plates574

9.6.3 The Long Horizontal Cylinder579

9.6.4 Spheres583

9.7 Free Convection within Parallel Plate Channels584

9.7.1 Vertical Channels585

9.7.2 Inclined Channels587

9.8 Empirical Correlations: Enclosures587

9.8.1 Rectangular Cavities587

9.8.2 Concentric Cylinders590

9.8.3 Concentric Spheres591

9.9 Combined Free and Forced Convection593

9.10 Convection Mass Transfer594

9.11 Summary595

References596

Problems597

CHAPTER 10Convection Processes of Boiling and Condensation619

10.1 Dimensionless Parameters in Boiling and Condensation620

10.2 Boiling Modes621

10.3 Pool Boiling622

10.3.1 The Boiling Curve622

10.3.2 Modes of Pool Boiling624

10.4 Pool Boiling Correlations627

10.4.1 Nucleate Pool Boiling627

10.4.2 Critical Heat Flux for Nucleate Pool Boiling629

10.4.3 Minimum Heat Flux629

10.4.4 Film Pool Boiling630

10.4.5 Parametric Effects on Pool Boiling631

10.5Forced Convection Boiling636

10.5.1 External Forced Convection Boiling637

10.5.2 Two-Phase Flow637

10.5.3 Two-Phase Flow in Microchannels640

10.6 Condensation: Physical Mechanisms641

10.7 Laminar Film Condensation on a Vertical Plate643

10.8 Turbulent Film Condensation646

10.9 Film Condensation on Radial Systems651

10.10 Film Condensation in Horizontal Tubes654

10.11 Dropwise Condensation655

10.12 Summary655

References656

Problems657

CHAPTER 11Heat Exchange Devices669

11.1Heat Exchanger Types670

11.2 The Overall Heat Transfer Coefficient673

11.3Heat Exchanger Analysis: Use of the Log Mean Temperature Difference675

11.3.1 The Parallel-Flow Heat Exchanger676

11.3.2 The Counterflow Heat Exchanger679

11.3.3 Special Operating Conditions679

11.4Heat Exchanger Analysis: The Effectiveness-NTU Method686

11.4.1 Definitions686

11.4.2 Effectiveness-NTU Relations688

11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness-NTU Method694

11.6 Compact Heat Exchangers700

11.7Summary705

References706

Problems707

CHAPTER 12Fundamental Concepts of Radiation723

12.1Fundamental Concepts724

12.2Radiation Intensity727

12.2.1 Mathematical Definitions727

12.2.2 Radiation Intensity and Its Relation to Emission728

12.2.3 Relation to Irradiation733

12.2.4 Relation to Radiosity735

12.3Blackbody Radiation736

12.3.1 The Planck Distribution737

12.3.2 Wien’s Displacement Law737

12.3.3 The Stefan-Boltzmann Law738

12.3.4 Band Emission739

12.4 Emission from Real Surfaces744

12.5Absorption, Reflection, and Transmission by Real Surfaces752

12.5.1 Absorptivity754

12.5.2 Reflectivity755

12.5.3 Transmissivity756

12.5.4 Special Considerations757

12.6 Kirchhoff’s Law762

12.7 The Gray Surface764

12.8 Environmental Radiation770

12.9Summary776

References780

Problems780

CHAPTER 13Radiative Transfer Between Two or More Surfaces811

13.1The View Factor812

13.1.1 The View Factor Integral812

13.1.2 View Factor Relations813

13.2Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure822

13.2.1 Net Radiation Exchange at a Surface823

13.2.2 Radiation Exchange Between Surfaces824

13.2.3 Blackbody Radiation Exchange830

13.2.4 The Two-Surface Enclosure831

13.2.5 Radiation Shields832

13.2.6 The Reradiating Surface835

13.3 Multimode Heat Transfer839

13.4Radiation Exchange with Participating Media842

13.4.1 Volumetric Absorption843

13.4.2 Gaseous Emission and Absorption843

13.5Summary847

References849

Problems849

CHAPTER 14Mass Transfer by Diffusion879

14.1Physical Origins and Rate Equations880

14.1.1 Physical Origins880

14.1.2 Mixture Composition881

14.1.3 Fick’s Law of Diffusion882

14.1.4 Mass Diffusivity883

14.2Mass Transfer in Nonstationary Media885

14.2.1 Absolute and Diffusive Species Fluxes885

14.2.2 Evaporation in a Column888

14.3 The Stationary Medium Approximation893

14.4Conservation of Species for a Stationary Medium894

14.4.1 Conservation of Species for a Control Volume894

14.4.2 The Mass Diffusion Equation894

14.4.3 Stationary Media with Specified Surface Concentrations897

14.5Boundary Conditions and Discontinuous Concentrations at Interfaces900

14.5.1 Evaporation and Sublimation901

14.5.2 Solubility of Gases in Liquids and Solids902

14.5.3 Catalytic Surface Reactions905

14.6 Mass Diffusion with Homogeneous Chemical Reactions908

14.7 Transient Diffusion911

14.8Summary916

References917

Problems917

《FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITION》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。

高度相关资料

FUNDAMENTALS OF HEAT TRANSFER( PDF版)
FUNDAMENTALS OF HEAT TRANSFER
PEACE PUBLISHERS
fundamentals of heat and mass transfer fifth edition P985( PDF版)
fundamentals of heat and mass transfer fifth edition P985
INTERNATIONAL ENCYCLOPEDIA OF HEAT & MASS TRANSFER(1997年 PDF版)
INTERNATIONAL ENCYCLOPEDIA OF HEAT & MASS TRANSFER
1997年
FUNDAMENTALS OF HEAT AND MASS TRANSFER( PDF版)
FUNDAMENTALS OF HEAT AND MASS TRANSFER
JOHN WILEY & SONS
Natural Convection Heat and Mass Transfer(1980 PDF版)
Natural Convection Heat and Mass Transfer
1980 Pergamon Press.
ANALYSIS OF HEAT AND MASS TRANSFER(1972 PDF版)
ANALYSIS OF HEAT AND MASS TRANSFER
1972 McGRAW-HILL KOGAKUSHA LTD
Heat and Mass Transfer(1959 PDF版)
Heat and Mass Transfer
1959 McGRAW-HILL BOOK COPMANY INC
FUNDAMENTALS OF HEAT AND MASS TRANSFER(1981 PDF版)
FUNDAMENTALS OF HEAT AND MASS TRANSFER
1981 JOHN WILEY & SONS
Heat and Mass Transfer(1959 PDF版)
Heat and Mass Transfer
1959 McGRAW-HILL BOOK COPMANY INC
THEORETICAL ASPECTS OF THE LOCALIZED CORROSION OF METALS(1985 PDF版)
THEORETICAL ASPECTS OF THE LOCALIZED CORROSION OF METALS
1985 TRANS TECH PUBLICATIONS
FOUNDAMENTALS OF MOMENTUM HEAT AND MASS TRANSFER(1969 PDF版)
FOUNDAMENTALS OF MOMENTUM HEAT AND MASS TRANSFER
1969 WILEY
Basic heat and mass transfer second edition(1999 PDF版)
Basic heat and mass transfer second edition
1999 PrenticeHall
Convective Heat and Mass Transfer(1966 PDF版)
Convective Heat and Mass Transfer
1966 McGraw-Hill Book Company.
HEAT AND MASS TRANSFER(1980 PDF版)
HEAT AND MASS TRANSFER
1980 MIR PUBLISHERS
HEAT AND MASS TRANSFER(1978 PDF版)
HEAT AND MASS TRANSFER
1978 TAT MCGRAW-HILL PUBLISHING CO.LTD.