《Elements of Linear Spaces》
作者 | A.R.Amir-Moez and A.L.Fass 编者 |
---|---|
出版 | Pergamon Press |
参考页数 | 149 |
出版时间 | 1962(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 818144818(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

PART Ⅰ1
1REAL EUCLIDEAN SPACE1
1.1 Scalars and vectors1
1.2 Sums and scalar multiples of vectors1
1.3 Linear independence2
1.4 Theorem2
1.5 Theorem2
1.6 Theorem2
1.7 Base(Co-ordinate system)3
1.8 Theorem4
1.9 Inner product of two vectors5
1.10 Projection of a vector on an axis5
1.11 Theorem6
1.12 Theorem6
1.13 Theorem7
1.14 Orthonormal base7
1.15 Norm of a vector and angle between two vectors in terms of components7
1.16 Orthonormalization of a base8
1.17 Subspaces9
1.18 Straight line10
1.19 Plane11
1.20 Distance between a point and a plane12
Exercises 113
Additional Problems15
2LINEAR TRANSFORMATIONS AND MATRICES16
2.1 Definition16
2.2 Addition and Multiplication of Transformations16
2.3 Theorem16
2.4 Matrix of a Transformation A16
2.5 Unit and zero transformation19
2.6 Addition of Mat-rices20
2.7 Product of Matrices20
2.8 Rectangular matrices21
2.9 Transform of a vector21
Exercises 223
Additional Problems25
3DETERMINANTS AND LINEAR EQUATIONS28
3.1 Definition28
3.2 Some properties of determinants29
3.3 Theorem29
3.4 Systems of Linear equations29
Exercises 334
4SPECIAL TRANSFORMATIONS AND THEIR MATRICES37
4.1 Inverse of a linear transformation37
4.2 A practical way of getting the inverse38
4.3 Theorem38
4.4 Adjoint of a transformation38
4.5 Theorem38
4.6 Theorem39
4.7 Theorem39
4.8 Orthogonal(Unitary)transformations39
4.9 Theorem40
4.10 Change of Base40
4.11 Theorem41
Exercises 443
Additional Problems44
5CHARACTERISTIC EQUATION OF A TRANSFORMATION AND QUADRATIC FORMS47
5.1 Characteristic values and characteristic vectors of a transformation47
5.2 Theorem47
5.3 Definition48
5.4 Theorem48
5.5 Theorem48
5.6 Special transformations48
5.7 Change of a matrix to diagonal form49
5.8 Theorem50
5.9 Definition51
5.10 Theorem51
5.11 Quadratic forms and their reduction to canonical form52
5.12 Reduction to sum or differences of squares54
5.13 Simultaneous reduction of two quadratic forms54
Exercises 557
Additional Problems58
PART Ⅱ61
6UNITARY SPACES61
Introduction61
6.1 Scalars,Vectors and vector spaces61
6.2 Subspaces61
6.3 Lin-ear independence61
6.4 Theorem61
6.5 Base62
6.6 Theorem62
6.7 Dimension theorem63
6.8 Inner Product63
6.9 Unitary spaces63
6.10 Definition63
6.11 Theorem63
6.12 Definition63
6.13 Theorem63
6.14 Definition64
6.15 Orthonormalization of a set of vectors64
6.16 Orthonormal base64
6.17 Theorem64
Exercises 665
7LINEAR TRANSFORMATIONS,MATRICES AND DETERMINANTS67
7.1 Definition67
7.2 Matrix of a Transfotmation A67
7.3 Addition and Multiplication of Matrices67
7.4 Rectangular matrices68
7.5 Determinants68
7.6 Rank of a matrix69
7.7 Systems of linear equations70
7.8 Inverse of a linear transformation72
7.9 Adjoint of a transformation73
7.10 Unitary Transformation73
7.11 Change of Base74
7.12 Characteristic values and Characteristic vectors of a transformation74
7.13 Definition74
7.14 Theorem75
7.15 Theorem75
Exercises 776
8QUADRATIC FORMS AND APPLICATION TO GEOMETRY79
8.1 Definition79
8.2 Reduction of a quadratic form to canonical form79
8.3 Reduction to Sum or difference of squares80
8.4 Simultaneous reduction of two quadratic forms80
8.5 Homogeneous Coordinates80
8.6 Change of coordinate system80
8.7 Invariance of rank81
8.8 Second degree curves82
8.9 Second degree Surfaces84
8.10 Direction numbers and equations of straight lines and planes89
8.11 Intersection of a straight line and a quadric89
8.12 Theorem90
8.13 A center of a quadric91
8.14 Tangent plane to a quadric92
8.15 Ruled surfaces93
8.16 Theorem95
Exercises 896
Additional Problems97
9APPLICATIONS AND PROBLEM SOLVING TECHNIQUES100
9.1 A general projection100
9.2 Intersection of planes100
9.3 Sphere101
9.4 A property of the sphere101
9.5 Radical axis102
9.6 Principal planes103
9.7 Central quadric104
9.8 Quadric of rank 2105
9.9 Quadric of rank 1106
9.10 Axis of rotation107
9.11 Identification of a quadric107
9.12 Rulings108
9.13 Locus problems108
9.14 Curves in space109
9.15 Pole and polar110
Exercises 9111
PART Ⅲ115
10SOME ALGEBRAIC STRUCTURES115
Introduction115
10.1 Definition115
10.2 Groups115
10.3 Theorem115
10.4 Corollary115
10.5 Fields115
10.6 Examples116
10.7 Vector spaces116
10.8 Subspaces116
10.9 Examples of vector spaces116
10.10 Linear independence117
10.11 Base117
10.12 Theorem117
10.13 Corollary117
10.14 Theorem117
10.15 Theorem118
10.16 Unitary spaces118
10.17 Theorem119
10.18 Orthogonality120
10.19 Theorem120
10.2l Orthogonal complement of a subspace121
Exercises 10121
11LINEAR TRANSFORMATIONS IN GENERAL VECTOR SPACES123
11.1 Definitions123
11.2 Space of linear transformations123
11.3 Algebra of linear transformations123
11.4 Finite-dimensional vector spaces124
11.5 Rectangular matrices124
11.6 Rank and range of a transformation124
11.7 Null space and nullity125
11.8 Trans-form of a vector125
11.9 Inverse of a transformation125
11.10 Change of base126
11.11 Characteristic equation of a transformation126
11.12 Cayley-Hamilton Theorem126
11.13 Unitary spaces and special transformations127
11.14 Complementary subspaces128
11.15 Projections128
11.16 Algebra of projections128
11.17 Matrix of a projection129
11.18 Perpendicular projection129
11.19 Decomposition of Hermitian transformations129
Exercises 11130
12SINGULAR VALUES AND ESTIMATES OF PROPER VALUES OF MATRICES132
12.1 Proper values of a matrix132
12.2 Theorem132
12.3 Cartesian decomposition of a linear transformation133
12.4 Singular values of a transformation134
12.5 Theorem134
12.6 Theorem135
12.7 Theorem135
12.8 Theorem135
12.9 Theorem136
12.10 Lemma136
12.11 Theorem137
12.12 The space of n-by-n matrices137
12.13 Hilbert norm137
12.14 Frobenius norm138
12.15 Theorem138
12.16 Theorem139
12.17 Theorem141
Exercises 12141
APPENDIX143
1.The plane143
2.Comparison of a line and a plane143
3.Two planes144
4.Linesand planes144
5.Skew lines145
6.Projection onto a plane145
Index147
1962《Elements of Linear Spaces》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由A.R.Amir-Moez and A.L.Fass 1962 Pergamon Press 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- LINEAR PROGRAMMING IN INFINITE-DIMENSIONAL SPACES
- 1987 JOHN WILEY & SONS
-
- Stochastic convergence of weighted sums of random elements in linear spaces
- 1978 SpringerVerlag
-
- Linear topological spaces
- 1963 Spring-Verlag
-
- Elements of non-linear functional analysis
- 1978 American Mathematical Society
-
- FACTORIZATION OF LINEAR OPERATORS AND GEOMETRY OF BANACH SPACES
- 1986 AMERICAN MATHEMATICAL SOCIETY
-
- Linear operators in Hilbert spaces
- 1980 Springer-Verlag
-
- PROBABILITY DISTRIBUTIONS ON LINEAR SPACES
- 1981 NORTH HOLLAND
-
- LINEAR OPERATORS IN HILBERT SPACES
- 1982 SPRINGER-VERLAG
-
- LINEAR SPACES AND DIFFERENTIATION THEORY
- 1988 JOHN WILEY & SONS
-
- REALIZATION SPACES OF POLYTOPES
- 1996 SPRINGER-VERLAG
-
- DIFFERENCE SPACES AND INVARIANT LINEAR FORMS
- 1994 SPRINGER-VERLAG
-
- LECTURE NOTES IN MATHEMATICS 490: THE GEOMETRY OF METRIC AND LINEAR SPACES
- 1975 SPRINGER-VERLAG
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD