《QUANTUM MECHANICS SYMMETRIES》
作者 | Second Edition 编者 |
---|---|
出版 | 北京/西安:世界图书出版公司 |
参考页数 | 496 |
出版时间 | 没有确切时间的资料 目录预览 |
ISBN号 | 7506212269 — 求助条款 |
PDF编号 | 816422898(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

1.Symmetries in Quantum Mechanics1
1.1Symmetries in Classical Physics1
1.2 Spatial Translations in Quantum Mechanics18
1.3 The Unitary Translation Operator19
1.4 The Equation of Motion for States Shifted in Space20
1.5 Symmetry and Degeneracy of States22
1.6 Time Displacements in Quantum Mechanics30
1.7 Mathematical Supplement:Definition of a Group32
1.8 Mathematical Supplement:Rotations and their Group Theoretical Properties35
1.9An Isomorphism of the Rotation Group37
1.9.1 Infinitesimal and Finite Rotations39
1.9.2 Isotropy of Space41
1.10 The Rotation Operator for Many-Particle States50
1.11 Biographical Notes51
2.Angular Momentum Algebra Representation of Angular Momentum Operators—Generators of SO(3)53
2.1.Irreducible Representations of the Rotation Group53
2.2Matrix Representations of Angular Momentum Operators57
2.3 Addition of Two Angular Momenta66
2.4 Evaluation of Clebsch-Gordan Coefficients70
2.5 Recursion Relations for Clebsch-Gordan Coefficients71
2.6 Explicit Calculation of Clebsch-Gordan Coefficients72
2.7 Biographical Notes79
3.Mathematical Supplement:Fundamental Properties of Lie Groups81
3.1General Structure of Lie Groups81
3.2 Interpretation of Commutators as Generalized Vector Products,Lie's Theorem,Rank of Lie Group91
3.3 Invariant Subgroups,Simple and Semisimple Lie Groups,Ideals93
3.4 Compact Lie Groups and Lie Algebras101
3.5 Invariant Operators(Casimir Operators)101
3.6 Theorem of Racah102
3.7 Comments on Multiplets102
3.8 Invariance Under a Symmetry Group104
3.9 Construction of the Invariant Operators108
3.10 Remark on Casimir Operators of Abelian Lie Groups110
3.11 Completeness Relation for Casimir Operators110
3.12 Review of Some Groups and Their Properties112
3.13 The Connection Between Coordianate Transformations and Transformations of Functions113
3.14 Biographical Notes126
4.Symmetry Groups and Their Physical Meaning-General Considerations127
4.1Biographical Notes132
5.The Isospin Group(Isobaric Spin)133
5.1Isospin Operators for a Multi-Nucleon System139
5.2 General Properties of Representations of a Lie Algebra146
5.3 Regular(or Adjoint)Representation of a Lie Algebra148
5.4 Transformation Law for Isospin Vectors152
5.5 Experimental Test of Isospin Invariance159
5.6 Biographical Notes174
6.The Hypercharge175
6.1Biographical Notes181
7.The SU(3)Symmetry183
7.1The Groups U(n)and SU(n)183
7.1.1.The Generators of U(n)and SU(n)185
7.2 The Generators of SU(3)187
7.3 The Lie Algebra of SU(3)190
7.4 The Subalgebras of the SU(3)-Lie Algebra and the Shift Operators198
7.5 Coupling of T-,U-and V-Multiplets201
7.6 Quantitative Analysis of Our Reasoning202
7.7 Further Remarks About the Geometric Form of an SU(3)Multiplet204
7.8 The Number of States on Mesh Points on Inner Shells205
8.Quarks and SU(3)217
8.1Searching for Quarks219
8.2 The Transformation Properties of Quark States220
8.3 Construction of all SU(3)Multiplets from the Elementary Representations[3]and[?]226
8.4Construction of the Representation D(p,q)from Quarks and Antiquarks228
8.4.1.The Smallest SU(3)Representations231
8.5 Meson Multiplets240
8.6 Rules for the Reduction of Direct Products of SU(3)Multiplets244
8.7 U-spin Invariance248
8.8 Test of U-spin Invariance250
8.9 The Gell-Mann-Okubo Mass Formula252
8.10 The Clebsch-Gordan Coefficients of the SU(3)254
8.11 Quark Models with Inner Degrees of Freedom257
8.12 The Mass Formula in SU(6)283
8.13 Magnetic Moments in the Quark Model284
8.14 Excited Meson and Baryon States286
8.14.1 Combinations of More Than Three Quarks286
8.15 Excited States with Orbital Angular Momentum288
9.Representations of the Permutation Group and Young Tableaux291
9.1The Permutation Group and Identical Particles291
9.2 The Standard Form of Young Diagrams295
9.3 Standard Form and Dimension of Irreducible Representations of the Permutation Group SN297
9.4 The Connection Between SU(2)and S2307
9.5 The Irreducible Representations of SU(n)310
9.6 Determination of the Dimension316
9.7 The SU(n-1)Subgroups of SU(n)320
9.8 Decomposition of the Tensor Product of Two Multiplets322
10.Mathematical Excursion.Group Characters327
10.1Definition of Group Characters327
10.2Schur's Lemmas328
10.2.1 Schur's First Lemma328
10.2.2 Schur's Second Lemma328
10.3 Orthogonality Relations of Representations and Discrete Groups329
10.4 Equivalence Classes331
10.5 Orthogonality Relations of the Group Characters for Discrete Groups and Other Relations334
10.6 Orthogonality Relations of the Group Characters for the Example of the Group D3334
10.7 Reduction of a Representation336
10.8 Criterion for Irreducibility337
10.9 Direct Product of Representations337
10.10 Extension to Continuous,Compact Groups338
10.11 Mathematical Excursion:Group Integration339
10.12 Unitary Groups340
10.13 The Transition from U(N)to SU(N)for the Example SU(3)342
10.14 Integration over Unitary Groups344
10.15 Group Characters of Unitary Groups347
11.Charm and SU(4)365
11.1Particles with Charm and the SU(4)367
11.2 The Group Properties of SU(4)367
11.3 Tables of the Structure Constants fijk and the Coefficients dijk for SU(4)376
11.4 Multiplet Structure of SU(4)378
11.5Advanced Considerations385
11.5.1 Decay of Mesons with Hidden Charm385
11.5.2 Decay of Mesons with Open Charm386
11.5.3 Baryon Multiplets387
11.6 The Potential Model of Charmonium398
11.7 The SU(4)[SU(8)]Mass Formula406
11.8 The γResonances409
12.Mathematical Supplement413
12.1Introduction413
12.2 Root Vectors and Classical Lie Algebras417
12.3 Scalar Products of Eigenvalues421
12.4 Cartan-Wevl Normalization424
12.5 Graphic Representation of the Root Vectors424
12.6 Lie Algebra of Rank 1425
12.7 Lie Algebras of Rank 2426
12.8 Lie Algebras of Rank 1>2426
12.9 The Exceptional Lie Algebras427
12.10 Simple Roots and Dynkin Diagrams428
12.11 Dynkin's Prescription430
12.12 The Cartan Matrix432
12.13 Determination of all Roots from the Simple Roots433
12.14 Two Simple Lie Algebras435
12.15 Representations of the Classical Lie Algebras436
13.Special Discrete Symmetries441
13.1Space Reflection(Parity Transformation)441
13.2 Reflected States and Operators443
13.3 Time Reversal444
13.4 Antiunitary Operators445
13.5 Many-Particle Systems450
13.6 Real Eigenfunctions451
14.Dynamical Symmetries453
14.1The Hydrogen Atom453
14.2 The Group SO(4)455
14.3 The Energy Levels of the Hydrogen Atom456
14.4The Classical Isotropic Oscillator458
14.4.1 The Quantum Mechanical Isotropic Oscillator458
15.Mathematical Excursion:Non-compact Lie Groups473
15.1Definition and Examples of Non-compact Lie Groups473
15.2 The Lie Group SO(2,1)480
15.3 Application to Scattering Problems484
Subject Index489
《QUANTUM MECHANICS SYMMETRIES》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由Second Edition 北京/西安:世界图书出版公司 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- APPLIED QUANTUM MECHANICS
- 1988 World Scientific Publishing Co.Pte.Ltd
-
- QUANTUM MECHANICS
- SIR ISAAC PITMAN AND SONS LTD
-
- Quantum Mechanics
- 1981 McGRAW-HILL Book Company Limited
-
- Relativistic quantum mechanics
- 1972 The Macmillan Press Ltd
-
- QUANTUM MECHANICS
- 1984 ROUTLEDGE & KEGAN PAUL
-
- QUANTUM MECHANICS
- 1992 WM. C. BROWN PUBLISHERS
-
- SYMMETRIES IN QUANTUM MECHANICS
- 1998 INSTITUTE OF PHYSICS PUBLISHING
-
- QUANTUM MECHANICS
- 1986 WORLD SCIENTIFIC
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD