《THE mathematical theory of ferfectly elastic solods》
作者 | William John ibbetson M.A. 编者 |
---|---|
出版 | Macmillan and CO. |
参考页数 | 515 |
出版时间 | 1887(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 813815548(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER Ⅰ. PROPERTIES OF ELASTIC SOLIDS1
1-17 Solid Matter as it really is1
18-34 Real Matter with ideally perfect Elasticity6
35-46 Ideal Continuous Matter with perfect Elasticity14
CHAPTER Ⅱ. ANALYSIS OF STRAINS19
47-50 Preliminary19
51-58 Theory of Small Strains in general20
59-66 General properties of Homogeneous Strain24
67-80 Analytical investigation27
81-84 Pure Homogeneous Strain32
85,86 Rotational Homogeneous Strain35
87,88 Principle of Superposition36
89-105 Components of Pure Strain37
106-110 Standard Components, or Types of Reference46
111-120 Specification of Strains48
121 Change of Axes of Reference54
122,123 Heterogeneous Strain in general55
124-128 Irrotational Strain in general56
129 Strain in Two Dimensions59
EXAMPLES ON CHAPTER Ⅱ62
APPENDIX Ⅰ.—GEOMETRY OF STRAINS65
APPENDIX Ⅱ.—FINITE SHEARS69
CHAPTER Ⅲ. ANALYSIS OF STRESSES75
130-137 Preliminary75
138-147 Equations of Equilibrium and Motion, and Boundary Conditions79
148-152 Standard Types of Reference89
153-155 Principle of Superposition93
156-158 Type of Stress, Homogeneous Stress95
159-173 Graphic properties of Stress in Three Dimensions96
174 Hydrostatic Pressure, etc104
175-184 Stress in Two Dimensions106
185,186 Stress in One Dimension114
187 Heterogeneous Stress in general115
EXAMPLES ON CHAPTER Ⅲ115
CHAPTER Ⅳ. POTENTIAL ENERGY OF STRAIN118
188 Introductory118
189-192 Work done by Stress119
193 Work done by Applied Forces and Surface Tractions122
194,195 Identity of these Expressions123
196-201 Potential Energy of Strain125
202-206 Crystalline Symmetry (?olotropy)129
207-209 Isotropy132
210-214 Elastic Moduli of Isotropic Solids134
215 Principal Axes of Strain and Stress139
216 Principal Surfaces of Strain, Lines of Stress140
217,218 Equations of Motion and Equilibrium, and Boundary Conditions143
219,220 Deduction of these from the Principle of Virtual Work145
221 Absolute Moduli, Weight Moduli, Length Moduli149
222 Resilience, Strength, Tenacity, Modulus of Rupture150
223-229 Possible forms of Discontinuity in Strain and Stress152
APPENDIX Ⅲ.—HOOKE'S LAW162
APPENDIX Ⅳ.—ELASTIC PROPERTIES OF NATURAL MATERIALS169
(A) Plastic Solids and Viscous Fluids169
(B) Ductile Metals181
(C) Brittle Solids196
(D) Timber198
NUMERICAL TABLES OF ELASTIC CONSTANTS, ETC199
(A) Factors for reduction from one system of units to another199
(B) Compressibility of Liquids200
(C) Weight Moduli of Solids in C.G.S. units201
(C big) Practical Table in English measure202
(D) Ultimate and Working Strength203
(E) Variation of Young's Modulus with temperature204
(F) Variation of Rigidity with temperature204
CHAPTER Ⅴ. CURVILINEAR CO?RDINATES205
230 Definitions and Notation205
231 Formul? of differentiation208
232 Principal Curvatures of the Co?rdinate Surfaces210
233 Surfaces in general215
234-236 Strain and Stress216
237-239 Equations of Motion and Equilibrium, and Boundary Conditions224
240-242 Special applications of Curvilinears230
243-252 Various systems of Curvilinears233
EXAMPLES ON CHAPTER Ⅴ257
CHAPTER Ⅵ. GENERAL SOLUTIONS AND EXAMPLES262
253 Recapitulation of the General Problem262
254-259 Preliminary Theorems265
260-263 Problem of Free Vibrations II279
264 Forced Vibrations under Surface Tractions only284
265,266 Sir William Thomson's method285
267-274 The Irrotational Solution288
275-277 The Rotational Solution299
278 Poisson's Integrals302
279-284 Forced Vibrations under Surface Tractions and Applied Forces derivable from a Potential305
285-294 Equilibrium under Surface Tractions only312
295-300 Spherical Harmonic Solution328
301 Solution in terms of Potentials, by Sir William Thomson's method339
302 Sir G. B. Airy's Solution341
303 Equilibrium under Conservative Applied Forces342
304-306 Spherical Harmonic Solution343
307-309 307 bis Sir G. B. Airy's Solution350
310-321 Boussinesq's Potential Solutions360
EXAMPLES ON CHAPTER Ⅵ375
CHAPTER Ⅶ. BEAMS AND WIRES385
322,323 Introductory385
324-328 St. Venant's Problem386
329 Extension394
330-342 Torsion395
343-355 Flexion410
356-358 Recomposition of Solutions421
359,360 Equilibrium and Motion of naturally Straight Wires423
361 The Linea Elastica429
362,363 The Helix of Equilibrium432
364 Simplified form of the Equations when the transverse deflection is small433
365,366 Small Vibrations of Wires435
367-370 Deflection from the Horizontal under Gravity437
371-376 Greenhill's Problems on Stability of Beams439
377-383 Naturally Curved Wires, and Circular Hoops444
EXAMPLES ON CHAPTER Ⅶ449
APPENDIX Ⅴ.—STRENGTH UNDER TORSION AND FLEX- ION.—NACHWIRKUNG454
CHAPTER Ⅷ. PLATES AND SHELLS458
384,385 Introductory458
386,387 Clebsch' Problem459
388-393 Flexion by Couples only462
394 Straining without Flexion Couple467
395-398 Equilibrium of Thin Plates under Impressed Forces and Edge Tractions, such that their components parallel to their Faces of the Plate are evanescent or reducible to couples468
399-403 Solution by the Energy Method473
405-407 Normal Vibrations of Thin Shells under Normal Forces478
EXAMPLES ON CHAPTER Ⅷ483
CHAPTER Ⅸ. IMPACT486
408 Definitions and Fundamental Principles486
409 Example of Sudden Release487
410 Example of Direct Collision489
EXAMPLES ON CHAPTER Ⅸ492
CHAPTER Ⅹ. VISCOSITY494
411 Analytical Expression of the effects of Viscosity494
412 Equations of Motion and Boundary Conditions for Viscous Solids494
413,414 Torsional Vibrations of a Viscous Cylinder495
415-417 Viscous L iquids497
APPENDIX Ⅵ.—ECONOMY OF MATERIAL IN NATURE500
ADDITIONAL NOTES504
NOTE Ⅰ. (3, page2).—Sphere of Action of the Intermolecular Forces504
NOTE Ⅱ. (123, page56).—Expressions for the Component Strains and Rotations to the second power of small quantities504
NOTE Ⅲ. (235, page222).—Transformation of the Component Rotations to Curvilinears506
NOTE Ⅳ. (239, page229).—Lamé’s transformation of the Equa- tions of Motion507
NOTE Ⅴ. (241, page231).—Differential Equations of Lines of Stress, in Curvilinears508
NOTE Ⅵ. (401, page477).—A Theorem in Conjugate Functions508
INDEX510
1887《THE mathematical theory of ferfectly elastic solods》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由William John ibbetson M.A. 1887 Macmillan and CO. 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- MATHEMATICAL THEORY OF ELASTIC EQUILIBRIUM RECENT RESULTS
- 1962 SPRINGER-VERLAG
-
- FOUNDATIONS OF THE MATHEMATICAL THEORY OF STRUCTURES
- 1975 SPRINGER-VERLAG
-
- Probability: elements of the mathematical theory
- 1971 Wiley Interscience Division
-
- The mathematical theory of coding
- 1975 Academic Press
-
- The mathematical theory of quantitative genetics
- 1980 Clarendon Press ; New York : Oxford University Press
-
- THE THEORY OF ELASTIC WAVES AND WAVEGUIDES
- 1978 NORTH-HOLLAND PUBLISHING COMPANY
-
- The Mathematical Theory of Black Holes
- 1983 Clarendon Press Oxford
-
- THEORY OF THIN ELASTIC SHELLS
- 1982 PITMAN ADVANCED PUBLISHING PROGRAM
-
- THEORY OF ELASTIC STABILITY
- 1963 MCGRAW-HILL INTERNATIONAL BOOK COMPANY
-
- THEORY OF ELASTIC COMPLEXES
- 1965 ELSEVIER PUBLISHING COMPANY
-
- ELEMENTS OF THE APPLIED THEORY OF ELASTIC VIBRATION
- 1971 MIR PUBLISHERS
-
- LINEAR ELASTIC THEORY OF THIN SHELLS
- 1965 PERGAMON PRESS OXFORD . LONDON . EDINBURGH . NEW YORK PARIS . FRANKFURT
-
- MATHEMATICAL THEORY OF ELASTIC EQUILIBRUM (RECENT RESULTS)
- 1962 SPRINGER-VERLAG BERLIN . GOTTINGEN . HEIDELBERG
-
- THE MATHEMATICAL THEORY OF RELATIVITY
- 1923 METHUEN AND CO. LTD.
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD