《SEMICONDUCTOR DEVICE FUNAMENTALS》求取 ⇩

Part Ⅰ Semiconductor Fundamentals1

Chapter 1 Semiconductors: A General Introduction3

1.1 General Material Properties3

1.1.1 Composition3

1.1.2 Purity5

1.1.3 Structure6

1.2 Crystal Structure6

1.2.1 The Unit Cell Concept7

1.2.2 Simple 3-D Unit Cells8

1.2.3 Semiconductor Lattices9

1.2.4 Miller Indices12

1.3 Crystal Growth16

1.3.1 Obtaining Ultrapure Si16

1.3.2 Single-Crystal Formation17

1.4 Summary19

Problems19

Chapter 2 Carrier Modeling23

2.1 The Quantization Concept23

2.2 Semiconductor Models25

2.2.1 Bonding Model26

2.2.2 Energy Band Model26

2.2.3 Carriers29

2.2.4 Band Gap and Material Classification31

2.3 Carrier Properties32

2.3.1 Charge32

2.3.2 Effective Mass32

2.3.3 Carrier Numbers in Intrinsic Material34

2.3.4 Manipulation of Carrier Numbers—Doping35

2.3.5 Carrier-Related Terminology40

2.4 State and Carrier Distributions40

2.4.1 Density of States41

2.4.2 The Fermi Function42

2.4.3 Equilibrium Distribution of Carriers46

2.5 Equilibrium Carrier Concentrations49

2.5.1 Formulas for n and p49

2.5.2 Alternative Expressions for n and p52

2.5.3 ni and the np Product53

2.5.4 Charge Neutrality Relationship57

2.5.5 Carrier Concentration Calculations59

2.5.6 Determination of EF61

2.5.7 Carrier Concentration Temperature Dependence65

2.6 Summary and Concluding Comments67

Problems69

Chapter 3 Carrier Action75

3.1 Drift75

3.1.1 Definition-Visualization75

3.1.2 Drift Current76

3.1.3 Mobility79

3.1.4 Resistivity85

3.1.5 Band Bending89

3.2 Diffusion94

3.2.1 Definition-Visualization94

3.2.2 Hot-Point Probe Measurement97

3.2.3 Diffusion and Total Currents98

Diffusion Currents98

Total Currents99

3.2.4 Relating Diffusion Coeffcients/Mobilities99

Constancy of the Fermi Level99

Current Flow Under Equilibrium Conditions101

Einstein Relationship101

3.3 Recombination-Generation105

3.3.1 Definition-Visualization105

Band-to-Band Recombination105

R-G Center Recombination105

Auger Recombination107

Generation Processes107

3.3.2 Momentum Considerations107

3.3.3 R-G Statistics110

Photogeneration110

Indirect Thermal Recombination-Generation112

3.3.4 Minority Carrier Lifetimes116

General Information116

A Lifetime Measurement116

3.4 Equations of State120

3.4.1 Continuity Equations121

3.4.2 Minority Carrier Diffusion Equations122

3.4.3 Simplifications and Solutions124

3.4.4 Problem Solving124

Sample Problem No.1124

Sample Problem No.2128

3.5 Supplemental Concepts131

3.5.1 Diffusion Lengths131

3.5.2 Quasi-Fermi Levels132

3.6 Summary and Concluding Comments136

Problems138

Chapter 4 Basics of Device Fabrication149

4.1 Fabrication Processes149

4.1.1 Oxidation149

4.1.2 Diffusion152

4.1.3 Ion Implantation155

4.1.4 Lithography159

4.1.5 Thin-Film Deposition162

Evaporation162

Sputtering162

Chemical Vapor Deposition (CVD)164

4.1.6 Epitaxy164

4.2 Device Fabrication Examples165

4.2.1 pn Junction Diode Fabrication166

4.2.2 Computer CPU Process Flow166

4.3 Summary174

R1 Part Ⅰ Supplement and Review175

Alternative/Supplemental Reading List175

Figure Sources/Cited References177

Review List of Terms178

Part Ⅰ—Review Problem Sets and Answers179

Part ⅡA pn Junction Diodes193

Chapter 5 pn Junction Electrostatics195

5.1 Preliminaries195

5.1.1 Junction Terminology/Idealized Profiles195

5.1.2 Poisson's Equation197

5.1.3 Qualitative Solution198

5.1.4 The Built-in Potential (Vbi)203

5.1.5 The Depletion Approximation206

5.2 Quantitative Electrostatic Relationships209

5.2.1 Assumptions/Definitions209

5.2.2 Step Junction with VA = 0210

Solution for p210

Solution for ?210

Solution for V212

Solution for xn and xp213

5.2.3 Step Junction with VA ≠ 0215

5.2.4 Examination/Extrapolation of Results219

5.2.5 Linearly Graded Junctions223

5.3 Summary226

Problems227

Chapter 6 pn Junction Diode: Ⅰ-V Characteristics235

6.1 The Ideal Diode Equation235

6.1.1 Qualitative Derivation235

6.1.2 Quantitative Solution Strategy241

General Considerations241

Quasineutral Region Considerations242

Depletion Region Considerations243

Boundary Conditions244

“Game Plan” Summary246

6.1.3 Derivation Proper247

6.1.4 Examination of Results249

Ideal Ⅰ-V249

The Saturation Current250

Carrier Currents254

Carrier Concentrations255

6.2 Deviations from the Ideal260

6.2.1 Ideal Theory Versus Experiment260

6.2.2 Reverse-Bias Breakdown263

Avalanching264

Zener Process268

6.2.3 The R-G Current270

6.2.4 VA --→ Vbi High-Current Phenomena277

Series Resistance278

High-Level Injection279

6.3 Special Considerations281

6.3.1 Charge Control Approach282

6.3.2 Narrow-Base Diode284

Current Derivation284

Limiting Cases/Punch-Through286

6.4 Summary and Concluding Comments288

Problems289

Chapter 7 pn Junction Diode: Small-Signal Admittance301

7.1 Introduction301

7.2 Reverse-Bias Junction Capacitance301

7.2.1 General Information301

7.2.2 C-V Relationships305

7.2.3 Parameter Extraction/Profiling309

7.2.4 Reverse-Bias Conductance313

7.3 Forward-Bias Diffusion Admittance315

7.3.1 General Information315

7.3.2 Admittance Relationships318

7.4 Summary323

Problems324

Chapter 8 pn Junction Diode: Transient Response327

8.1 Turn-Off Transient327

8.1.1 Introduction327

8.1.2 Qualitative Analysis329

8.1.3 The Storage Delay Time333

Quantitative Analysis333

Measurement334

8.1.4 General Information338

8.2 Turn-On Transient338

8.3 Summary343

Problems344

Chapter 9 Optoelectronic Diodes347

9.1 Introduction347

9.2 Photodiodes349

9.2.1 pn Junction Photodiodes349

9.2.2 p-i-n and Avalanche Photodiodes352

p-i-n Photodiodes352

Avalanche Photodiodes355

9.3 Solar Cells356

9.3.1 Solar Cell Basics356

9.3.2 Efficiency Considerations357

9.3.3 Solar Cell Technology360

9.4 LEDs361

9.4.1 General Overview361

9.4.2 Commercial LEDs362

9.4.3 LED Packaging and Photon Extraction366

Part ⅡB BJTs and Other Junction Devices369

Chapter 10 BJT Fundamentals371

10.1 Terminology371

10.2 Fabrication374

10.3 Electrostatics378

10.4 Introductory Operational Considerations380

10.5 Performance Parameters382

Emitter Ef382

ciency382

Base Transport Factor383

Common Base d.c.Current Gain383

Common Emitter d.c.Current Gain384

10.6 Summary385

Problems385

Chapter 11 BJT Static Characteristics389

11.1 Ideal Transistor Analysis389

11.1.1 Solution Strategy389

Basic Assumptions389

Notation390

Diffusion Equations/Boundary Conditions390

Computational Relationships392

11.1.2 General Solution (W Arbitrary)393

Emitter/Collector Region Solutions393

Base Region Solution394

Performance Parameters/Terminal Currents395

11.1.3 Simplified Relationships (W 《 LB)397

△PB (x) in the Base398

Performance Parameters398

11.1.4 Ebers-Moll Equations and Model403

11.2 Deviations from the Ideal407

11.2.1 Ideal Theory/Experiment Comparison407

11.2.2 Base Width Modulation410

11.2.3 Punch-Through412

11.2.4 Avalanche Multiplication and Breakdown414

Common Base414

Common Emitter414

11.2.5 Geometrical Effects420

Emitter Area ≠ Collector Area420

Series Resistances421

Current Crowding421

11.2.6 Recombination-Generation Current422

11.2.7 Graded Base423

11.2.8 Figures of Merit424

11.3 Modern BJT Structures426

11.3.1 Polysilicon Emitter BJT426

11.3.2 Heterojunction Bipolar Transistor (HBT)429

11.4 Summary432

Problems433

Chapter 12 BJT Dynamic Response Modeling443

12.1 Small-Signal Equivalent Circuits443

12.1.1 Generalized Two-Port Model443

12.1.2 Hybrid-Pi Models446

12.2 Transient (Switching) Response449

12.2.1 Qualitative Observations449

12.2.2 Charge Control Relationships452

12.2.3 Quantitative Analysis454

Turn-on Transient454

Turn-off Transient456

12.2.4 Practical Considerations457

12.3 Summary458

Problems459

Chapter 13 PNPN Devices463

13.1 Silicon Controlled Rectifier (SCR)463

13.2 SCR Operational Theory465

13.3 Practical Turn-on/Turn-off Considerations470

13.3.1 Circuit Operation470

13.3.2 Additional Triggering Mechanisms471

13.3.3 Shorted-Cathode Configuration471

13.3.4 di/dt and dv/dt Effects472

13.3.5 Triggering Time473

13.3.6 Switching Advantages/Disadvantages473

13.4 Other PNPN Devices474

Chapter 14 MS Contacts and Schottky Diodes477

14.1 Ideal MS Contacts477

14.2 Schottky Diode483

14.2.1 Electrostatics483

Built-in Voltage483

p,?, V485

Depletion Width486

14.2.2 Ⅰ-V Characteristics487

14.2.3 a.c.Response493

14.2.4 Transient Response496

14.3 Practical Contact Considerations497

14.3.1 Rectifying Contacts497

14.3.2 Ohmic Contacts498

14.4 Summary500

Problems501

R2 Part Ⅱ Supplement and Review505

Alternative/Supplemental Reading List505

Figure Sources/Cited References506

Review List of Terms507

Part Ⅱ—Review Problem Sets and Answers508

Part Ⅲ Field Effect Devices523

Chapter 15 Field Effect Introduction—The J-FET and MESFET525

15.1 General Introduction525

15.2 J-FET530

15.2.1 Introduction530

15.2.2 Qualitative Theory of Operation531

15.2.3 Quantitative ID-VD Relationships536

15.2.4 a.c.Response547

15.3 MESFET550

15.3.1 General Information550

15.3.2 Short-Channel Considerations552

Variable Mobility Model553

Saturated Velocity Model554

Two-Region Model555

15.4 Summary557

Problems557

Chapter 16 MOS Fundamentals563

16.1 Ideal Structure Definition563

16.2 Electrostatics—Mostly Qualitative565

16.2.1 Visualization Aids565

Energy Band Diagram565

Block Charge Diagrams566

16.2.2 Effect of an Applied Bias567

General Observations567

Specific Biasing Regions568

16.3 Electrostatics—Quantitative Formulation571

16.3.1 Semiconductor Electrostatics571

Preparatory Considerations571

Delta-Depletion Solution576

16.3.2 Gate Voltage Relationship580

16.4 Capacitance-Voltage Characteristics584

16.4.1 Theory and Analysis584

Qualitative Theory584

Delta-Depletion Analysis590

16.4.2 Computations and Observations591

Exact Computations591

Practical Observations595

16.5 Summary and Concluding Comments599

Problems600

Chapter 17 MOSFETs—The Essentials611

17.1 Qualitative Theory of Operation611

17.2 Quantitative ID -VD Relationships617

17.2.1 Preliminary Considerations617

Threshold Voltage617

Effective Mobility618

17.2.2 Square-Law Theory620

17.2.3 Bulk-Charge Theory625

17.2.4 Charge-Sheet and Exact-Charge Theories628

17.3 a.c.Response630

17.3.1 Small-Signal Equivalent Circuits630

17.3.2 Cutoff Frequency633

17.3.3 Small-Signal Characteristics634

17.4 Summary637

Problems638

Chapter 18 Nonideal MOS645

18.1 Metal-Semiconductor Workfunction Difference645

18.2 Oxide Charges650

18.2.1 General Information650

18.2.2 Mobile Ions653

18.2.3 The Fixed Charge658

18.2.4 Interfacial Traps662

18.2.5 Induced Charges668

Radiation Effects668

Negative-Bias Instability669

18.2.6 △VGSummary670

18.3 MOSFET Threshold Considerations674

18.3.1 VT Relationships675

18.3.2 Threshold, Terminology, and Technology676

18.3.3 Threshold Adjustment678

18.3.4 Back Biasing680

18.3.5 Threshold Summary681

Problems684

Chapter 19 Modern FET Structures691

19.1 Small Dimension Effects691

19.1.1 Introduction691

19.1.2 Threshold Voltage Modification694

Short Channel694

Narrow Width697

19.1.3 Parasitic BJT Action698

19.1.4 Hot-Carrier Effects700

Oxide Charging700

Velocity Saturation700

Velocity Overshoot/Ballistic Transport701

19.2 Select Structure Survey702

19.2.1 MOSFET Structures702

LDD Transistors702

DMOS703

Buried-Channel MOSFET704

SiGe Devices704

SOI Structures705

19.2.2 MODFET (HEMT)707

Problems710

R3 Part Ⅲ Supplement and Review713

Alternative/Supplemental Reading List713

Figure Sources/Cited References714

Review List of Terms717

Part Ⅲ—Review Problem Sets and Answers718

Appendices733

Appendix A Elements of Quantum Mechanics733

A.1 The Quantization Concept733

A.1.1 Blackbody Radiation733

A.1.2 The Bohr Atom735

A.1.3 Wave-Particle Duality737

A.2 Basic Formalism739

A.3 Electronic States in Atoms741

A.3.1 The Hydrogen Atom741

A.3.2 Multi-Electron Atoms744

Appendix B MOS Semiconductor Electrostatics—Exact Solution749

Definition of Parameters749

Exact Solution750

Appendix C MOS C-V Supplement753

Appendix D MOS I-V Supplement755

Appendix E List of Symbols757

Appendix M MATLAB Program Script771

Exercise 10.2 (BJT_Eband)771

Exercise 11.7 (BJT) and Exercise 11.10 (BJTplus)774

Exercise 16.5 (MOS_CV)778

Index781

1996《SEMICONDUCTOR DEVICE FUNAMENTALS》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由 1996 ADDISON WESLEY LONGMAN 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。