《INTRODUCTION TO THEORETICAL PHYSICS》
作者 | JOHN C.SLATER PH.D. 编者 |
---|---|
出版 | MCGRAW-HILL BOOK COMPANY INC |
参考页数 | 576 |
出版时间 | 没有确切时间的资料 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 811606178(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER ⅠPOWER SERIES1
INTRODUCTION1
1.POWER SERIES2
2.SMALL QUANTITIES OF VARIOUS ORDERS3
3.TAYLOR'S EXPANSION4
4.THE BINOMIAL THEOREM4
5.EXPANSION ABOUT AN ARBITRARY POINT4
6.EXFANSION ABOUT A POLE5
7.CONVERGENCE5
PROBLEMS8
CHAPTER ⅡPOWER SERIES METHOD FOR DIFFERENTIAL EQUATICNS10
INTRODUCTION10
8.THE FALLING BODY11
9.FALLING BODY WITH VISCOSITY11
10.PARTICULAR AND GENERAL SOLUTIONS FOR FALLING BODY WITH VISCOSITY14
11.ELECTRIC CIRCUIT CONTAINING RESISTANCE AND INDUCTANCE16
PROBLEMS17
CHAPTER ⅢPOWER SERIES AND EXPONENTIAL METHODS FOR SIMPLE HARMONIC VIBRATIONS19
INTRODUCTION19
12.PARTICLE WITH LINEAR RESTORING FORCE19
13.OSCILLATING ELECTRIC CIRCUIT20
14.THE EXPONENTIAL METHOD OF SOLUTION21
15.COMPLEX EXPONENTIALS22
16.COMPLEX NUMBERS23
17.APPLICATION OF COMPLEX NUMBERS TO VIBRATION PROBLEMS25
PROBLEMS26
CHAPTER ⅣDAMPED VIBRATIONS,FORCED VIBRATIONS,AND RESONANCE27
INTRODUCTION27
18.DAMPED VIBRATIONAL MOTION27
19.DAMPED ELECTRICAL OSCILLATIONS28
20.INITIAL CONDITIONS FOR TRANSIENTS29
21.FORCED VIBRATIONS AND RESONANCE29
22.MECHANICAL RESONANCE30
23.ELECTRICAL RESONANCE31
24.SUPERPOSITION OF TRANSIENT AND FORCED MOTION33
25.MOTION UNDER GENERAL EXTERNAL FORCES35
26.GENERALIZATIONS REGARDING LINEAR DIFFERENTIAL EQUATIONS36
PROBLEMS37
CHAPTER ⅤENERGY39
INTRODUCTION39
27.MECHANICAL ENERGY40
28.USE OF THE POTENTIAL FOR DISCUSSING THE MOTION OF A SYSTEM42
29.THE ROLLING-BALL ANALOGY45
30.MOTION IN SEVERAL DIMENSIONS46
PROBLEMS46
CHAPTER ⅥVECTOR FORCES AND POTENTIALS48
INTRODUCTION48
31.VECTORS AND THEIR COMPONENTS48
32.SCALAR PRODUCT OF TWO VECTORS49
33.VECTOR PRODUCT OF TWO VECTORS50
34.VECTOR FIELDS51
35.THE ENERGY THEOREM IN THREE DIMENSIONS52
36.LINE INTEGRALS AND POTENTIAL ENERGY52
37.FORCE AS GRADIENT OF POTENTIAL53
38.EQUIPOTENTIAL SURFACES54
39.THE CURL AND THE CONDITION FOR A CONSERVATIVE SYSTEM55
40.THE SYMBOLIC VECTOR ▽55
PROBLEMS56
CHapter ⅦLAGRANGE'S EQUATIONS AND PLANETARY MOTION58
INTRODUCTION58
41.LAGRANGE'S EQUATIONS58
42.PLANETARY MOTION60
43.ENERGY METHOD FOR RADIAL MOTION IN CENTRAL FIELD61
44.ORBITS IN CENTRAL MOTION62
45.JUSTIFICATION OF LAGRANGE'S METHOD64
PROBLEMS67
CHAPTER ⅧGENERALIZED MOMENTA AND HAMILTON'S EQUATIONS69
INTRODUCTION69
46.GENERALIZED FORCES69
47.GENERALIZED MOMENTA70
48.HAMILTON'S EQUATIONS OF MOTION71
49.GENERAL PROOF OF HAMILTON'S EQUATIONS72
50.EXAMPLE OF HAMILTON'S EQUATIONS74
51.APPLICATIONS OF LAGRANGE'S AND HAMILTON'S EQUATIONS75
PROBLEMS76
CHAPTER ⅨPHASE SPACE AND THE GENERAL MOTION OF PARTICLES79
INTRODUCTION79
52.THE PHASE SPACE80
53.PHASE SPACE FOR THE LINEAR OSCILLATOR81
54.PHASE SPACE FOR CENTRAL MOTION82
55.NONCENTRAL TWO-DIMENSIONAL MOTION83
56.CONFIGURATION SPACE AND MOMENTUM SPACE83
57.THE TWO-DIMENSIONAL OSCILLATOR84
58.METHODS OF SOLUTION86
59.CONTACT TRANSFORMATIONS AND ANGLE VAROABLES87
60.METHODS OF SOLUTION FOR NONPERIODIC MOTIONS90
PROBLEMS90
CHAPTER ⅩTHE MOTION OF RIGID BODIES92
INTRODUCTION92
61.ELEMENTARY THEORY OF PRECESSING TOP92
62.ANGULAR MOMENTUM,MOMENT OF INERTIA,AND KINETIC ENERGY94
63.THE ELLIPSOID OF INERTIA;PRINCIPAL AXES OF INERTIA95
64.THE EQUATIONS OF MOTION96
65.EULER'S EQUATIONS98
66.TORQUE-FREE MOTION OF A SYMMETRIC RIGID BODY98
67.EULER'S ANGLES100
68.GENERAL MOTION OF A SYMMETRICAL TOP UNDER GRAVITY102
69.PRECESSION AND NUTATION104
PROBLEMS105
CHAPTER ⅪCOUPLED SYSTEMS AND NORMAL COORDINATES107
INTRODUCTION107
70.COUPLED OSCILLATORS107
71.NORMAL COORDINATES111
72.RELATION OF PROBLEM OF COUPLED SYSTEMS TO TWO-DIMEN-SIONAL OSCILLATOR114
73.THE GENERAL PROBLEM OF THE MOTION OF SEVERAL PARTICLES117
PROBLEMS118
CHAPTER ⅫTHE VIBRATING STRING,AND FOURIER SERIES120
INTRODUCTION120
74.DIFFERENTIAL EQUATION OF THE VIBRATING STRING120
75.THE INITIAL CONDITIONS FOR THE STRING122
76.FOURIER SERIES123
77.COEFFICIENTS OF FOURIER SERIES124
78.CONVERGENCE OF FOURIER SERIES125
79.SINE AND COSINE SERIES,WITH APPLICATION TO THE STRING126
80.THE STRING AS A LIMITING PROBLEM OF VIBRATION OF PARTICLES128
81.LAGRANGE'S EQUATIONS FOR THE WEIGHTED STRING131
82.CONTINUOUS STRING AS LIMITING CASE131
PROBLEMS132
CHAPTER ⅩⅢNORMAL COORDINATES AND THE VIBRATING STRING134
INTRODUCTION134
83.NORMAL COORDINATES134
84.NORMAL COORDINAES AND FUNCTION SPACE137
85.FOURLER ANALYSIS IN FUNCTION SPACE139
86.EQUATIONS OF MOTION IN NORMAL COORDINATES140
87.THE VIBRATING STRING WITH FRICTION142
PROBLEMS144
CHAPTER ⅩⅣTHE STRING WITH VARIABLE TENSION AND DENSITY146
INTRODUCTION146
88.DIFFERENTIAL EQUATION FOR THE VARIABLE STRING146
89.APPROXIMATE SOLUTION FOR SLOWLY CHANGING DENSITY AND TENSION147
90.PROGRESSIVE WAVES AND STANDING WAVES149
91.ORTHOGONALITY OF NORMAL FUNCTIONS151
92.EXPANSION OF AN ARBITRARY FUNCTION USING NORMAL FUNC-TIONS152
93.PERTURBATION THEORY154
94.REFLECTION OF WAVES FROM A DISCONTINUITY156
PROBLEMS158
CHAPTER ⅩⅤTHE VIBRATING MEMBRANE160
INTRODUCTION160
95.BOUNDARY CONDITIONS ON THE RECTANGULAR MEMBRANE160
96.THE NODES IN A VIBRATING MEMBRANE162
97.INITIAL CONDITIONS162
98.THE METHOD OF SEPARATION OF VARIABLES163
99.THE CIRCULAR MEMBRANE164
100.THE LAPLACIAN IN POLAR COORDINATES164
101.SOLUTION OF THE DIFFERENTIAL EQUATION BY SEPARATION165
102.BOUNDARY CONDITIONS166
103.PHYSICAL NATURE OF THE SOLUTION167
104.INITIAL CONDITION AT t=O168
105.PROOF OF ORTHOGONALITY OF THE J'S169
PROBLEMS170
CHAPTER ⅩⅥSTRESSES,STRAINS,AND VIBRATIONS OF AN ELASTIC SOLID172
INTRODUCTION172
106.STRESSES,BODY AND SURFACE FORCES172
107.EXAMPLES OF STRESSES174
108.THE EQUATION OF MOTION175
109.TRANSVERSE WAVES176
110.LONGITUDINAL WAVES178
111.GENERAL WAVE PROPAGATION179
112.STRAINS AND HOOKE'S LAW180
113.YOUNG'S MODULUS182
PROBLEMS183
CHAPTER ⅩⅦFLOW OF FLUIDS185
INTRODUCTION185
114.VELOCITY,FLUX DENSITY,AND LINES OF FLOW185
115.THE EQUATION OF CONTINUITY186
116.GAUSS'S THEOREM187
117.LINES OF FLOW TO MEASURE RATE OF FLOW188
118.IRROTATIONAL FLOW AND THE VELOCITY POTENTIAL188
119.EULER'S EQUATIONS OF MOTION FOR IDEAL FLUIDS190
120.IRROTATIONAL FLOW AND BERNOULLI'S EQUATION191
121.VISCOUS FLUIDS192
122.POISEUILLE'S LAW194
PROBLEMS195
CHAPTER ⅩⅧHEAT FLOW197
INTRODUCTION197
123.DIFFERENTIAL EQUATION OF HEAT FLOW197
124.THE STEADY FLOW OF HEAT198
125.FLOW VECTORS IN GENERALIZED COORDINATES199
126.GRADIENT IN GENERALIZED COORDINATES200
127.DIVERGENCE IN GENERALIZED COORDINATES200
128.LAPLACIAN201
129.STEADY FLOW OF HEAT IN A SPHERE201
130.SPHERICAL HARMONICS202
131.FOURIER'S METHOD FOR THE TRANSIENT FLOW OF HEAT203
132.INTEGRAL METHOD FOR HEAT FLOW205
PROBLEMS209
CHAPTER ⅩⅨELECTROSTATICS,GREEN'S THEOREM,AND POTENTIAL THEORY210
INTRODUCTION210
133.THE DIVERGENCE OF THE FIELD210
134.THE POTENTIAL211
135.ELECTROSTATIC PROBLEMS WITHOUT CONDUCTORS212
136.ELECTROSTATIC PROBLEMS WITH CONDUCTORS215
137.GREEN'S THEOREM217
138.PROOF OF SOLUTION OF POISSON'S EQUATION217
139.SOLUTION OF POISSON'S EQUATION IN A FINITE REGION220
140.GREEN'S DISTRIBUTION221
141.GREEN'S METHOD OF SOLVING DIFFERENTIAL EQUATIONS222
PROBLEMS223
CHAPTER ⅩⅩMAGNETIC FIELDS,STOKES'S THEOREM,AND VECTOR POTENTIAL225
INTRODUCTION225
142.THE MAGNETIC FIELD OF CURRENTS226
143.FIELD OF A STRAIGHT WIRE228
144.STOKES'S THEOREM229
145.THE CURL IN CURVILINEAR COORDINATES229
146.APPLICATIONS OF STOKES'S THEOREM230
147.EXAMPLE:MAGNETIC FIELD IN A SOLENOID231
148.THE VECTOR POTENTIAL231
149.THE BIOT-SAVART LAW233
PROBLEMS234
CHAPTER ⅩⅪELECTROMAGNETIC INDUCTION AND MAXWELL'S EQUATIONS235
INTRODUCTION235
150.THE DIFFERENTIAL EQUATION FOR ELECTROMAGNETIC INDUCTION235
151.THE DISPLACEMENT CURRENT236
152.MAXWELL'S EQUATIONS239
153.THE VECTOR AND SCALAR POTENTIALS241
PROBLEMS244
CHAPTER ⅩⅫENERGY IN THE ELECTROMAGNETIC FIELD246
INTRODUCTION246
154.ENERGY IN A CONDENSER246
155.ENERGY IN THE ELECTRIC FIELD247
156.ENERGY IN A SOLENOID248
157.ENERGY DENSITY AND ENERGY FLOW249
158.POYNTING'S THEOREM250
159.THE NATURE OF AN E.M.F.250
160.EXAMPLES OF POYNTING'S VECTOR251
161.ENERGY IN A PLANE WAVE253
162.PLANE WAVES IN METALS255
PROBLEMS256
CHAPTER ⅩⅩⅢREFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES258
INTRODUCTION258
163.BOUNDARY CONDITIONS AT A SURFCE OF DISCONTINUITY258
164.THE LAWS OF REFLECTION AND REFRACTION259
165.REFLECTION COEFFICIENT AT NORMAL INCIDENCE260
166.FRESNEL'S EQUATIONS262
167.THE POLARIZING ANGLE264
168.TOTAL REFLECTION265
169.THE OPTICAL BEHAVIOR OF METALS267
PROBLEMS268
CHAPTER ⅩⅩⅣELECTRON THEORY AND DISPERSION270
INTRODUCTION270
170.POLARIZATION AND DIELECTRIC CONSTANT271
171.THE RELATIONS OF P,E,AND D273
172.POLARIZABILITY AND DIELECTRIC CONSTANT OF GASES275
173.DISPERSION IN GASES275
174.DISPERSION OF SOLIDS AND LIQUIDS278
175.DISPERSION OF METALS280
PROBLEMS283
CHAPTER ⅩⅩⅤSPHERICAL ELECTROMAGNETIC WAVES286
INTRODUCTION286
176.SPHERICAL SOLUTIONS OF THE WAVE EQUATION286
177.SCALAR POTENTIAL FOR OSCILLATING DIPOLE288
178.VECTOR POTENTIAL289
179.THE FIELDS290
180.THE HERTZ VECTOR291
181.INTENSITY OF RADIATION FROM A DIPOLE293
182.SCATTERING OF LIGHT293
183.POLARIZATION OF SCATTERED LIGHT295
184.COHERENCE AND INCOHERENCE OF LIGHT295
185.COHERENCE AND THE SPECTRUM298
186.COHERENCE OF DIFFERENT SOURCES299
PROBLEMS299
CHAPTER ⅩⅩⅥHUYGENS'PRINCIPLE AND GREEN'S THEOREM302
INTRODUCTION302
187.THE RETARDED POTENTIALS303
188.MATHEMATICAL FORMULATION OF HUYGENS'PRINCIPLE305
189.APPLICATION TO OPTICS307
190.INTEGRATION FOR A SPHERICAL SURFACE BY FRESNEL'S ZONES308
191.THE USE OF HUYGENS'PRINCIPLE310
192.HUYGENS'PRINCIPLE FOR DIFFRACTION PROBLEMS310
193.QUALITATIVE DISCUSSION OF DIFFRACTION,USING FRESNEL'S ZONES311
PROBLEMS314
CHAPTER ⅩⅩⅦFRESNEL AND FRAUNHOFER DIFFRACTION315
INTRODUCTION315
194.COMPARISON OF FRESNEL AND FRAUNHOFER DIFFRACTION315
195.FRESNEL DIFFRACTION FROM A SLIT319
196.CORNU'S SPIRAL320
197.FRAUNHOFER DIFFRACTION FROM RECTANGULAR SLIT323
198.THE CIRCULAR APERTURE324
199.RESOLVING POWER OF A LENS325
200.DIFFRACTION FROM SEVERAL SLITS;THE DIFFRACTION GRATING326
PROBLEMS328
CHAPTER ⅩⅩⅧWAVES,RAYS,AND WAVE MECHANICS329
INTRODUCTION329
201.THE QUANTUM HYPOTHESIS330
202.THE STATISTICAL INTERPRETATION OF WAVE THEORY332
203.THE UNCERTAINTY PRINCIPLE FOR OPTICS333
204.WAVE MECHANICS335
205.FREQUENCY AND WAVE LENGTH IN WAVE MECHANICS337
206.WAVE PACKETS AND THE UNCERTAINTY PRINCIPLE337
207.FERMAT'S PRINCIPLE339
208.THE MOTION OF PARTICLES AND THE PRINCIPLE OF LEAST ACTION342
PROBLEMS343
CHAPTER ⅩⅩⅨSCHR?DINGER'S EQUATION IN ONE DIMENSION345
INTRODUCTION345
209.SCHR?DINGER'S EQUATION345
210.ONE-DIMENSIONAL MOTION IN WAVE MECHANICS346
211.BOUNDARY CONDITIONS IN ONE-DIMENSIONAL MOTION350
212.THE PENETRATION OF BARRIERS351
213.MOTION IN A FINITE REGION,AND THE QUANTUM CONDITION353
214.MOTION IN TWO OR MORE FINITE REGIONS355
PROBLEMS356
CHAPTER ⅩⅩⅩTHE CORRESPONDENCE PRINCIPLE AND STATISTICAL MECHANICS358
INTRODUCTION358
215.THE QUANTUM CONDITION IN THE PHASE SPACE358
216.ANGLE VARIABLES AND THE CORRESPONDENCE PRINCIPLE359
217.THE QUANTUM CONDITION FOR SEVERAL DEGREES OF FREEDOM361
218.CLASSICAL STATISTICAL MECHANICS IN THE PHASE SPACE364
219.LIOUVILLE'S THEOREM365
220.DISTRIBUTIONS INDEPENDENT OF TIME366
221.THE MICROCANONICAL ENSEMBLE367
222.THE CANONICAL ENSEMBLE368
223.THE QUANTUM THEORY AND THE PHASE SPACE369
PROBLEMS371
CHAPTER ⅩⅩⅪMATRICES374
INTRODUCTION374
224.MEAN VALUE OF A FUNCTION OF COORDINATES374
225.PHYSICAL MEANING OF MATRIX COMPONENTS375
226.INITIAL CONDITIONS,AND DETERMINATION OF c'S377
227.MEAN VALUES OF FUNCTIONS OF MOMENTA379
228.SCHR?DINGER'S EQUATION INCLUDING THE TIME381
229.SOME THEOREMS REGARDING MATRICES382
PROBLEMS384
CHAPTER ⅩⅩⅫPERTURBATION THEORY386
INTRODUCTION386
230.THE SECULAR EQUATION OF PERTURBATION THEORY386
231.THE POWER SERIES SOLUTION387
232.PERTURBATION THEORY FOR DEGENERATE SYSTEMS390
233.THE METHOD OF VARIATION OF CONSTANTS391
234.EXTERNAL RADIATION FIELD392
235.EINSTEIN'S PROBABILITY COEFFICIENTS393
236.METHOD OF DERIVING THE PROBABILITY COEFFICIENTS395
237.APPLICATION OF PERTURBATION THEORY396
238.SPONTANEOUS RADIATION AND COUPLED SYSTEMS399
239.APPLICATIONS OF COUPLED SYSTEMS TO RADIOACTIVITY AND ELECTRONIC COLLISIONS402
PROBLEMS404
CHAPTER ⅩⅩⅩⅢTHE HYDROGEN ATOM AND THE CENTRAL FIELD406
INTRODUCTION406
240.THE ATOM AND ITS NUCLEUS406
241.THE STRUCTURE OF HYDROGEN407
242.DISCUSSION OF THE FUNCTION OF r FOR HYDROGEN410
243.THE ANGULAR MOMENTUM414
244.SERIES AND SELECTION PRINCIPLES416
245.THE GENERAL CENTRAL FIELD418
PROBLEMS423
CHAPTER ⅩⅩⅩⅣATOMIC STRUCTURE425
INTRODUCTION425
246.THE PERIODIC TABLE426
247.THE METHOD OF SELF-CONSISTENT FIELDS430
248.EFFECTIVE NUCLEAR CHARGES431
249.THE MANY-BODY PROBLEN IN WAYE MECHANICS432
250.SCHR?DINGER'S EQUATION AND EFFECTIVE NUCLEAR CHARGES433
251.IONIZATION POTENTIALS AND ONE-ELECTRON ENERGIES435
PROBLEMS437
CHAPTER ⅩⅩⅩⅤINTERATOMIC FORCES AND MOLECULAR STRUCTURE439
INTRODUCTION439
252.IONIC FORCES439
253.POLARIZATION FORCE439
254.VAN DER WAALS'FORCE440
255.PENETRATION OR COULOMB FORCE442
256.VALENCE ATTRACTION442
257.ATOMIC REPULSIONS444
258.ANALYTICAL FORMULAS FOR VALENCE AND REPULSIVE FORCES444
259.TYPES OF SUBSTANCES:VALENCE COMPOUNDS447
260.METALS449
261.IONIC COMPOUNDS449
PROBLEMS451
CHAPTER ⅩⅩⅩⅥEQUATION OF STATE OF GASES454
INTRODUCTION454
262.GASES,LIQUIDS,AND SOLIDS454
263.THE CANONICAL ENSEMBLE456
264.THE FREE ENERGY458
265.PROPERTIES OF PERFECT GASES ON CLASSICAL THEORY461
266.PROPERTIES OF IMPERFECT GASES ON CLASSICAL THEORY462
267.VAN DER WAALS'EQUATION464
268.QUANTUM STATISTICS466
269.QUANTUM THEORY OF THE PERFECT GAS468
PROBLEMS470
CHAPTER ⅩⅩⅩⅦNUCLEAR VIBRATIONS IN MOLECULES AND SOLIDS471
INTRODUCTION471
270.THE CRYSTAL AT ABSOLUTE ZERO472
271.TEMPERATURE VIBRATIONS OF A CRYSTAL474
272.EQUATION OF STATE OF SOLIDS478
273.VIBRATIONS OF MOLECULES480
274.DIATOMIC MOLECULES481
275.SPECIFIC HEAT OF DIATOMIC MOLECULES483
276.POLYATOMIC MOLECULES485
PROBLEMS486
CHAPTER ⅩⅩⅩⅧCOLLISIONS AND CHEMICAL REACTIONS488
INTRODUCTION488
277.CHEMICAL REACTIONS488
278.COLLISIONS WITH ELECTRONIC EXCITATION491
279.ELECTRONIC AND NUCLEAR ENERGY IN METALS494
280.PERTURBATION METHOD FOR INTERACTION OF NUCLEI497
PROBLEMS499
CHAPTER ⅩⅩⅩⅨELECTRONIC INTERACTIONS501
INTRODUCTION501
281.THE EXCLUSION PRINCIPLE502
282.RESULTS OF ANTISYMMETRY OF WAVE FUNCTIONS506
283.THE ELECTRON SPIN507
284.ELECTRON SPINS AND MULTIPLICITY OF LEVELS509
285.MULTIPLICITY AND THE EXCLUSION PRINCIPLE510
286.SPIN DEGENERACY FOR TWO ELECTRONS512
287.EFFECT OF EXCLUSION PRINCIPLE AND SPIN514
PROBLEMS516
CHAPTER ⅩLELECTRONIC ENERGY OF ATOMS AND MOLECULES518
INTRODUCTION518
288.ATOMIC ENERGY LEVELS518
289.SPIN AND ORBITAL DEGENERACY IN ATOMIC MULTIPLETS520
290.ENERGY LEVELS OF DIATOMIC MOLECULES522
291.HEITLER AND LONDON METHOD FOR H2523
292.THE METHOD OF MOLECULAR ORBITALS527
PROBLEMS530
CHAPTER ⅩLⅠFERMI STATISTICS AND METALLIC STRUCTURE531
INTRODUCTION531
293.THE EXCLUSION PRINCIPLE FOR FREE ELECTRONS531
294.MAXIMUM KINETIC ENERGY AND DENSITY OF ELECTRONS534
295.THE FERMI-THOMAS ATOMIC MODEL535
296.ELECTRONS IN METALS536
297.THE FERMI DISTRIBUTION540
PROBLEMS543
CHAPTER ⅩLⅡDISPERSION,DIELECTRICS,AND MAGNETISM545
INTRODUCTION545
298.DISPERSION AND DISPERSION ELECTRONS546
299.QUANTUM THEORY OF DISPERSION548
300.POLARIZABILITY549
301.VAN DER WAALS'FORCE551
302.TYPES OF DIELECTRICS553
303.THEORY OF DIPOLE ORIENTATION554
304.MAGNETIC SUBSTANCES555
PROBLEMS558
SUGGESTED REFERENCES561
INDEX565
《INTRODUCTION TO THEORETICAL PHYSICS》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由JOHN C.SLATER PH.D. MCGRAW-HILL BOOK COMPANY INC 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- INTRODUCTION TO LASER PHYSICS
- 1984 SPRINGER-VERLAG
-
- INTRODUCTION TO MODERN THEORETICAL PHYSICS VOLUME 2
- 1975 JOHN WILEY & SONS
-
- INTRODUCTION TO NONLINEAR PHYSICS
- 1997 SPRINGER
-
- INTRODUCTION TO THEORETICAL GAS DYNAMICS
- 1943 J.W.EDWARDS
-
- INTRODUCTION TO MODERN THEORETICAL PHYSICS VOLUME 1
- 1975 JOHN WILEY & SONS
-
- INTRODUCTION TO THEORETICAL MECHANICS
- 1954 MCGRAW-HILL PUBLISHING COMPANY LTD.
-
- THE Classical ELECTROMAGNETIC FIELD
- 1972 ADDISON-WESLEY PUBLISHING COMPANY
-
- INTRODUCTION TO COMPUTIONAL PHYSICS
- 1991 ADDISON WESLEY PUBLISHING COMPANY
-
- INTRODUCTION TO PARTICLE PHYSICS
- A DIVISION OF JOHN WILEY & AONS LTD
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD