《MATHEMATICAL STATISTICS》
作者 | S.S.WILKS 编者 |
---|---|
出版 | 未查询到或未知 |
参考页数 | 284 |
出版时间 | 没有确切时间的资料 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 811587048(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER Ⅰ.INTRODUCTION1
CHAPTER Ⅱ.DISTRIBUTION FUNCTIONS5
2.1Cumulative Distribution Functions5
2.11 Univariate Case5
2.12 Bivariate Case8
2.13 k-Variate Case11
2.2 Marginal Distributions12
2.3 Statistical Independence13
2.4 Conditional Probability15
2.5The Stieltjes Integral17
2.51 Univariate Case17
2.52 Bivariate Case20
2.53 k-Variate Case21
2.6Transformetion of Variables23
2.61 Univariate Case24
2.62 Bivariate Case24
2.63 k-Variate Case28
2.7Mean Value29
2.71 Univariate Case;Tohebycheff's Inequality30
2.72 Bivariate Case31
2.73 k-Variate Case32
2.74 Mean and Variance of a Linear Combination of Random Variables33
2.75 Covariance and Correlation between two Linear Combinations of Random Variables34
2.76 The Moment Problem35
2.8Moment Generating Functions36
2.81 Univariate Case36
2.82 Multivariate Case39
2.9Regression40
2.91 Regression Functions40
2.92 Variance about Regression Functions41
2.93 Partial Correlation42
2.94 Multiple Correlation42
CHAPTER Ⅲ.SOME SPECIAL DISTRIBUTIONS47
3.1Discrete Distributions47
3.11 Binomial Distribution47
3.12 Multinomial Distribution50
3.13 The Poisson Distribution52
3.14 The Negative Binomial Distribution54
3.2The Normal Distribution56
3.21 The Univariate Case56
3.22 The Normal Bivarlate Distribution59
3.23 The Normal Multivariate Distribution63
3.5 Pearson System of Distribution Functions72
3.4 The Gram-Charlier Series76
CHAPTER Ⅳ.SAMPLING THEORY79
4.1General Remarks79
4.2Application of Theorems on Mean Values to Sampling Theory80
4.21 Distribution of Sample Mean81
4.22 Expected Value of Sample Variance83
4.3 Sampling from a Finite Population83
4.4Representative Sampling86
4.41 Sampling when the Pi are known87
4.42 Sampling when the σi are also known88
4.5Sampling Theory of Order Statistics89
4.51 Simultaneous Distribution of any k Order Statistics89
4.52 Distribution of Largest(or Smallest)Variate91
4.53 Distribution of Median91
4.54 Distribution of Sample Range92
4.55 Tolerance Limits93
4.6 Mean Values of Sample Moments when Sample Values are Grouped;Sheppard Corrections94
4.7 Appendix on Lagrange's Multipliers97
CHAPTER Ⅴ.SAMPLING FROM A NORMAL POPULATION98
5.1Distribution of Sample Mean98
5.11 Distribution of Difference between Two Sample Means100
5.12 Joint Distribution of Means in Samples from a Normal Bivariate Distribution100
5.2The X2-distribution102
5.21 Distribution of Sum of Squares of Normally and Independently Distributed Variables102
5.22 Distribution of the Exponent in a Multivariate Normal Distribution103
5.23 Reproductive Property of X2-Distribution105
5.24 Cochran's Theorem105
5.25 Independence of Mean and Sum of Squared Deviations from Mean in Samples from a Normal Population108
5.3 The"Student"t-Distribution110
5.4 Snedecor's F-Distribution113
5.5 Distribution of Second Order Sample Moments in Samples from a Bivariate Normal Distribution116
5.6 Independence of Second Order Moments and Means in Samples from a Normal Multivariate Distribution120
CHAPTER Ⅵ.ON THE THEORY OF STATISTICAL ESTIMATION122
6.1Confidence Intervals and Confidence Regions122
6.11 Case in which the Distribution Depends on only one Parameter122
6.12 Confidence Limits from Large Samples127
6.13 Confidence Intervals in the Case where the Distribution Depends on Several Parameters130
6.14 Confidence Regions132
6.2Point Estimetion:Maximum Likelihood Statistics133
6.21 Consistency133
6.22 Efficiency134
6.23 Sufficiency135
6.24 Maximum Likelihood Estimates136
6.3 Tolerance Interval Estimation142
6.4 The Fitting of Distribution Functions145
CHAPTER Ⅶ.TESTS OF STATISTICAL HYPPTHESES147
7.1Statistical Tests Related to Confidence Intervals147
7.2 Likelihood Ratio Tests150
7.3 The Neyman-Pearson Theory of Testing Hypotheses152
CHAPTER Ⅷ.NORMAL REGRESSION THEORY157
8.1Case of One Fixed Variate157
8.2 The Case of k Fixed Variates160
8.3 A General Normal Regression Significance Test166
8.4Remarks on the Generality of Theorem(A),8.3171
8.41 Case 1171
8.42 Case 2172
8.43 Case 3173
8.5 The Minimum of a sum of Squares of Deviations with Respect to Regression Coefficients which are Subject to Linear Restrictions174
CHAPTER Ⅸ.APPLICATIONS OF NORMAL REGRESSION THEORY TO ANALYSIS OF VARIANCE PROBLEMS176
9.1Testing for the Equality of Means of Normal Populations with the Same Variance176
9.2 Randomized Blocks or Two-way Layouts177
9.3 Three-way and Higher Order Layouts;Interaction181
9.4 Latin Squares186
9.5 Graeco-Latin Squares190
9.6 Analysis of Variance in Incomplete Layouts192
9.7 Analysis of Covariance195
CHAPTER Ⅹ.ON COMBINATORIAL STATISTICAL THEORY200
10.1On the Theory of Runs200
10.11 Case of Two Kinds of Elements200
10.12 Case of k Kinds of Elements205
10.2 Application of Run Theory to Ordering Within Samples206
10.3Matching Theory208
10.31 Case of Two Decks of Cards208
10.32 Case of Three or More Decks of Cards212
10.4Independence in Contingency Tables213
10.41 The Fartitional Approach213
10.42 Karl Pearson's Original Chi-Square Problems and its Application to Contingency Tables217
10.5Sampling Inspection220
10.51 Single Sampling Inspection221
10.52 Double Sampling Inspection224
CHAPTER Ⅺ.AN INTRODUCTION TO MULTIVARIATE STATISTICAI ANALYSIS226
11.1The Wishart Distribution226
11.2 Reproductive Property of the Wiahart Distribution232
11.3 The Independence of Means and Second Order Moments in Samples from a Normal Multivariate Population233
11.4 Hotelling's Generelized"Student"Test234
11.5 The Hypothesis of Equality of Means in Multivariate Normal Populations238
11.6 The Hypothesis of Independence of Sets of Variables in a Normal Multivariate Population242
11.7 Linear Regression Theory in Normal Multivariate Populations245
11.8 Remarks on Multivariate Analysis of Variance Theory250
11.9 Principal Components of a Total Variance252
11.10 Canonical Correlation Theory257
11.11The Sampling Theory of the Roots of Certain Determinantal Equations260
11.111 Characteristic Roots of One Sample Variance-covariance Matrix261
11.112 Characteristic Roots of the Difference of Two Sample Variance-covariance Matrices265
11.113 Distribution of the Sample Canonical Correlations268
LITERATURE FOR SUPPLEMENTARY READING271
INDEX279
《MATHEMATICAL STATISTICS》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- CHARACTERIZATION PROBLEMS IN MATHEMATICAL STATISTICS
- JOHN WILEY & SONS
-
- Modern mathematical statistics
- 1988 Wiley
-
- Introduction to mathematical statistics
- 1984 Wiley
-
- Mathematical Elementary statistics Seventh Edition
- 1988 Prentice-Hall
-
- Elements of mathematical statistics
- 1961 Wiley
-
- Probability theory and mathematical statistics
- 1986 Mir Publishers
-
- Mathematical statistics
- 1980 PWN Polish Scientific Publishers
-
- APPROXIMATION THEOREMS OF MATHEMATICAL STATISTICS
- 1980 JOHN WILEY & SONS
-
- MATHEMATICAL STATISTICS AND PROBABILITY THEORY
- 1980 SPRINGER-VERLAG
-
- AN INTRODUCTION TO MATHEMATICAL STATISTICS
- 1960 GINN AND COMPANY
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD