华硕Z99笔记本不开机的维修实例

某电脑维修公司维修工程师周一早上刚到公司,客人在门口早就等着了,嘴里一直抱怨,说电脑质量太差了不好用,马上进入工作状态,不开机状态下用专用维修 Power Supply 插入主板电源输入端, 电流10mA,1分钟后按开机键观察 Power Supply 输出电流,20mA后回到10mA, 此表明所述的不开机问题确实存在 (PS: 用这种power Supply 时正常情况下,按开机键电流会讯速上升到1A以上当有显示时)。
2. 华硕Z99笔记本拆机取出裸板,插上电池,用可变电源供电,电流仍为10mA, 此时量测相关控制信号,透过SM BUS波形表明系统能准识别电源存在,按开机键时,5V无输出,3V正常
3. 华硕Z99笔记本检查制芯片MAX1632相关信号,5V Buck 电路PWM 输出不正常,推定MAX1632 失效

修复:给华硕Z99笔记本更换 MAX1632后进入正常开机界面。

SONY索尼VGN505笔记本不开机故障维修

电脑维修知识库现在提供笔记本维修实战实例。希望这能对广大学习笔记本维修的人有所帮助。

文章来源:北京中维电脑医院

同行送来一台SONY VGN505笔记本,故障为不开机,按开机键整机没反应。。插上直流电源试机,电流为0。。。拆机。。上电检查发现没有待机3V5V,测量PU17 MAX1999的20脚没有19V电压输入,检查隔离电路没发现坏的元件,测PQ51的5678脚有19V输出,而123脚也有19V输出,测PQ50的5678却没有19V输出,测PQ50的1脚G极电压为19V,原因找到了,就是因为PQ50的G级电压一直保持在19V,造成5678脚没有电压输出,在路测量PQ50是好的,PC158电容也是好的,试着把PQ50拆掉,上电测量G极一样是19V,试着更换MAX1909,故障依旧!

根据电路图,再认真检查,发现跟PQ50 G极相连PQ70三极管短路,此三极管的E极跟PQ51 PQ50的123脚相连,C极跟PQ50的G极相连,由于此PQ70短路,PQ50的G极永远保持在19V的高电平而造成PQ50的5678脚没有电压输出!整机不工作。。拆掉PQ70后上电,直流电源电流显示为0.01A,测PQ50的5678脚输出19V,4脚G极为9.3V,测待机3V5V正常,开机显示正常。。。用电池单独测试,开关机也正常!进系统烤机2个钟头没出现任何故障。。。此机已修复。

。由于此机的PCB板上只有MOS管和三极管印了代号,而电阻电容等均没有印,再加上SONY的保护电路太复杂

电脑主板坏了从哪里着手修?

首先要提醒用户的是,灰尘是主板最大的敌人之一,最好大家注意一下。上次某客户拿过来一块主板,说是不亮,我们怎么查也检查不出毛病,后来用三氯乙烷(挥发性能好,是清洗主板的液体之一)清洗后“怪病”完全消失。为了保证“怪病”不出现,最好注意防尘。还有就是在突然掉电时,要马上关上计算机,以免又突然来电把主板和电源烧毁,最近我们碰上好几起类似此事的事故了。好,不多说了,下面我来讲一下分析流程。

无论何时何地都要善于思考,这样维修技术才会进步

1、目视:

拿到一块有故障主板先用眼睛扫一下,看看没有没烧坏的痕迹,外观有没损坏,这都是我们检查的范围。

2、示波器:

用示波器测主板各元器件供电的情况。一个是检测主板是否对这部分供电,再有就是供电的电压是否正常。

3、石英振荡器:

它的作用是让主板各个部分的运行同步,就像系统工作在133 外频的道理一样,所有的硬件的频率都会因此上升或下降,IO 一般是8M,PCI设备是33M,如果有出入说明石英振荡器该更新了。

4、BIOS:

重写BIOS。因为BIOS 是无法通过仪器测的,它是以软件形式存在的,为了排除一切可能12导致主板出现问题的原因,最好把主板BIOS刷一下。

5、通电:

在此之前是不能通电的,万一元器件还没被完全烧坏,结果一通电……。排除了以上问题,终于可以通电,再了解一下是哪儿出现的问题。

6、系统总线:

如:ISA、PCI、AGP 的元器件是否出现问题。有的卡的插槽前一段是供电、中间是向内传送数据,后一段是输出,那么分工不同在电器性能上也会有差异,一般它们相差几欧是没事的,但如果相差十几欧,恐怕该换新的了。

7、控制信号线:

控制信号线包括了主板上各个部分线路的信号传输线路,如果从示波器的信号波形来判断没问题,一般以上这些方法绝大部分都可以搞定,那么就可以进行下一步了。当然了,这部分可不是咱一般人看得懂的,这需要有经验的工程师来解决。
如果还是不行,那我们就该“会诊”了,呵呵……。

8、排除法:

确定出错的范围,把它消灭。一般死机是比较难处理的。

首先要提醒用户的是,灰尘是主板最大的敌人之一,最好大家注意一下。上次某客户拿过来一块主板,说是不亮,我们怎么查也检查不出毛病,后来用三氯乙烷(挥发性能好,是清洗主板的液体之一)清洗后“怪病”完全消失。为了保证“怪病”不出现,最好注意防尘。还有就是在突然掉电时,要马上关上计算机,以免又突然来电把主板和电源烧毁,最近我们碰上好几起类似此事的事故了。好,不多说了,下面我来讲一下分析流程。1、目视:拿到一块有故障主板先用眼睛扫一下,看看没有没烧坏的痕迹,外观有没损坏,这都是我们检查的范围。2、示波器:用示波器测主板各元器件供电的情况。一个是检测主板是否对这部分供电,再有就是供电的电压是否正常。3、石英振荡器:它的作用是让主板各个部分的运行同步,就像系统工作在133 外频的道理一样,所有的硬件的频率都会因此上升或下降,IO 一般是8M,PCI设备是33M,如果有出入说明石英振荡器该更新了。4、BIOS:重写BIOS。因为BIOS 是无法通过仪器测的,它是以软件形式存在的,为了排除一切可能12导致主板出现问题的原因,最好把主板BIOS刷一下。5、通电:在此之前是不能通电的,万一元器件还没被完全烧坏,结果一通电……。排除了以上问题,终于可以通电,再了解一下是哪儿出现的问题。6、系统总线:如:ISA、PCI、AGP 的元器件是否出现问题。有的卡的插槽前一段是供电、中间是向内传送数据,后一段是输出,那么分工不同在电器性能上也会有差异,一般它们相差几欧是没事的,但如果相差十几欧,恐怕该换新的了。7、控制信号线:控制信号线包括了主板上各个部分线路的信号传输线路,如果从示波器的信号波形来判断没问题,一般以上这些方法绝大部分都可以搞定,那么就可以进行下一步了。当然了,这部分可不是咱一般人看得懂的,这需要有经验的工程师来解决。如果还是不行,那我们就该“会诊”了,呵呵……。8、排除法:确定出错的范围,把它消灭。一般死机是比较难处理的。

电脑总线技术基础知识“页总汇”

忽忽,这个标题我取得不错。

任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线将会错综复杂,甚至难以实现。为了简化硬件电路设计、简化系统结构,常用一组线路,配置以适当的接口电路,与各部件和外围设备连接,这组共用的连接线路被称为总线。采用总线结构便于部件和设备的扩充,尤其制定了统一的总线标准则容易使不同设备间实现互连。
—-微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。
—-另外,从广义上说,计算机通信方式可以分为并行通信和串行通信,相应的通信总线被称为并行总线和串行总线。并行通信速度快、实时性好,但由于占用的口线多,不适于小型化产品;而串行通信速率虽低,但在数据通信吞吐量不是很大的微处理电路中则显得更加简易、方便、灵活。串行通信一般可分为异步模式和同步模式。
—-随着微电子技术和计算机技术的发展,总线技术也在不断地发展和完善,而使计算机总线技术种类繁多,各具特色。下面仅对微机各类总线中目前比较流行的总线技术分别加以介绍。

一、内部总线

—-1.I2C总线
—-I2C(Inter-IC)总线10 多年前由Philips公司推出,是近年来在微电子通信控制领域广泛采用的一种新型总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。
—-2.SPI总线
—-串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola 公司推出的一种同步串行接口。Motorola 公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68 系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
10
—-3.SCI总线
—-串行通信接口SCI(serial communication interface)也是由Motorola 公司推出的。它是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。

二、系统总线

—-1.ISA总线
—-ISA(industrial standard architecture)总线标准是IBM 公司1984年为推出PC/AT 机而建立的系统总线标准,所以也叫AT 总线。它是对XT总线的扩展,以适应8/16 位数据总线要求。它在80286 至80486 时代应用非常广泛,以至于现在奔腾机中还保留有ISA总线插槽。ISA总线有98 只引脚。
—-2.EISA总线
—-EISA总线是1988 年由Compaq等9 家公司联合推出的总线标准。它是在ISA总线的基础上使用双层插座,在原来ISA总线的98 条信号线上又增加了98 条信号线,也就是在两条ISA信号线之间添加一条EISA信号线。在实用中,EISA总线完全兼容ISA总线信号。
—-3.VESA总线
—-VESA(video electronics standard association)总线是 1992 年由60 家附件卡制造商联合推出的一种局部总线,简称为VL(VESA local bus)总线。它的推出为微机系统总线体系结构的革新奠定了基础。该总线系统考虑到CPU与主存和Cache 的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。它定义了32 位数据线,且可通过扩展槽扩展到64 位,使用33MHz 时钟频率,最大传输率达132MB/s,可与CPU同步工作。是一种高速、高效的局部总线,可支持386SX、386DX、486SX、486DX及奔腾微处理器。

—-4.PCI总线

—-PCI(peripheral component interconnect)总线是当前最流行的总线之一,它是由Intel公司推出的一种局部总线。它定义了32 位数据总线,且可扩展为64位。PCI总线主板插槽的体积比原ISA总线插槽还小,其功能比VESA、ISA 有极大的改善,支持突发读写操作,最大传输速率可达132MB/s,可同时支持多组外围设备。PCI局部总线不能兼容现有的ISA、EISA、MCA(micro channel architecture)总线,但它不受制于处理器,是基于奔腾等新一代微处理器而发展的总线。

—-5.Compact PCI

—-以上所列举的几种系统总线一般都用于商用PC机中,在计算机系统总线中,还有另一大类为适应工业现场环境而设计的系统总线,比如STD 总线、 VME 总线、PC/104 总线等。这里仅介绍当前工业计算机的热门总线之一——Compact PCI。
—-Compact PCI的意思是“坚实的PCI”,是当今第一个采用无源总线底板结构的PCI系统,是PCI总线的电气和软件标准加欧式卡的工业组装标准,是当今最新的一种工业计算机标准。Compact PCI是在原来PCI总线基础上改造而来,它利用PCI的优点,提供满足工业环境应用要求的高性能核心系统,同时还考虑充分利用传统的总线产品,如ISA、STD、VME或PC/104 来扩充系统的I/O 和其他功能。
三、外部总线
—-1.RS-232-C总线
—-RS-232-C是美国电子工业协会EIA(Electronic Industry Association)制定的一种串行物理接口标准。RS是英文“推荐标准”的缩写,232 为标识号,C表示修改次数。RS-232-C总线标准设有25 条信号线,包括一个主通道和一个辅助通道,在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。RS-232-C标准规定的数据传输速率为每秒50、75、 100、150、300、600、1200、2400、4800、119600、19200波特。RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。
—-2.RS-485总线
—-在要求通信距离为几十米到上千米时,广泛采用RS-485 串行总线标准。RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。加上总线收发器具有高灵敏度,能检测低至200mV的电压,故传输信号能在千米以外得到恢复。RS-485采用半双工工作方式,任何时候只能有一点处于发送状态,因此,发送电路须由使能信号加以控制。RS-485用于多点互连时非常方便,可以省掉许多信号线。应用RS-485 可以联网构成分布式系统,其允许最多并联32 台驱动器和32台接收器。
—-3.IEEE-488总线
—-上述两种外部总线是串行总线,而IEEE-488 总线是并行总线接口标准。IEEE-488 总线用来连接系统,如微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488 总线装配起来。它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备直接并联于总线上而不需中介单元,但总线上最多可连接15 台设备。最大传输距离为20 米,信号传输速度一般为500KB/s,最大传输速度为1MB/s。
—-4.USB总线
—通用串行总线USB(universal serial bus)是由Intel、Compaq、Digital、IBM、Microsoft、NEC、Northern Telecom等7 家世界著名的计算机和通信公司共同推出的一种新型接口标准。它基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。它可以为外设提供电源,而不像普通的使用串、并口的设备需要单独的供电系统。另外,快速是USB技术的突出特点之一,USB的最高传输率可达12Mbps 比串口快100 倍,比并口快近10 倍,而且USB还能支持多媒体。
<NextPage>

任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线将会错综复杂,甚至难以实现。为了简化硬件电路设计、简化系统结构,常用一组线路,配置以适当的接口电路,与各部件和外围设备连接,这组共用的连接线路被称为总线。采用总线结构便于部件和设备的扩充,尤其制定了统一的总线标准则容易使不同设备间实现互连。—-微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。—-另外,从广义上说,计算机通信方式可以分为并行通信和串行通信,相应的通信总线被称为并行总线和串行总线。并行通信速度快、实时性好,但由于占用的口线多,不适于小型化产品;而串行通信速率虽低,但在数据通信吞吐量不是很大的微处理电路中则显得更加简易、方便、灵活。串行通信一般可分为异步模式和同步模式。—-随着微电子技术和计算机技术的发展,总线技术也在不断地发展和完善,而使计算机总线技术种类繁多,各具特色。下面仅对微机各类总线中目前比较流行的总线技术分别加以介绍。一、内部总线—-1.I2C总线—-I2C(Inter-IC)总线10 多年前由Philips公司推出,是近年来在微电子通信控制领域广泛采用的一种新型总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。—-2.SPI总线—-串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola 公司推出的一种同步串行接口。Motorola 公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68 系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。10—-3.SCI总线—-串行通信接口SCI(serial communication interface)也是由Motorola 公司推出的。它是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。二、系统总线—-1.ISA总线—-ISA(industrial standard architecture)总线标准是IBM 公司1984年为推出PC/AT 机而建立的系统总线标准,所以也叫AT 总线。它是对XT总线的扩展,以适应8/16 位数据总线要求。它在80286 至80486 时代应用非常广泛,以至于现在奔腾机中还保留有ISA总线插槽。ISA总线有98 只引脚。—-2.EISA总线—-EISA总线是1988 年由Compaq等9 家公司联合推出的总线标准。它是在ISA总线的基础上使用双层插座,在原来ISA总线的98 条信号线上又增加了98 条信号线,也就是在两条ISA信号线之间添加一条EISA信号线。在实用中,EISA总线完全兼容ISA总线信号。—-3.VESA总线—-VESA(video electronics standard association)总线是 1992 年由60 家附件卡制造商联合推出的一种局部总线,简称为VL(VESA local bus)总线。它的推出为微机系统总线体系结构的革新奠定了基础。该总线系统考虑到CPU与主存和Cache 的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。它定义了32 位数据线,且可通过扩展槽扩展到64 位,使用33MHz 时钟频率,最大传输率达132MB/s,可与CPU同步工作。是一种高速、高效的局部总线,可支持386SX、386DX、486SX、486DX及奔腾微处理器。—-4.PCI总线—-PCI(peripheral component interconnect)总线是当前最流行的总线之一,它是由Intel公司推出的一种局部总线。它定义了32 位数据总线,且可扩展为64位。PCI总线主板插槽的体积比原ISA总线插槽还小,其功能比VESA、ISA 有极大的改善,支持突发读写操作,最大传输速率可达132MB/s,可同时支持多组外围设备。PCI局部总线不能兼容现有的ISA、EISA、MCA(micro channel architecture)总线,但它不受制于处理器,是基于奔腾等新一代微处理器而发展的总线。—-5.Compact PCI—-以上所列举的几种系统总线一般都用于商用PC机中,在计算机系统总线中,还有另一大类为适应工业现场环境而设计的系统总线,比如STD 总线、 VME 总线、PC/104 总线等。这里仅介绍当前工业计算机的热门总线之一——Compact PCI。—-Compact PCI的意思是“坚实的PCI”,是当今第一个采用无源总线底板结构的PCI系统,是PCI总线的电气和软件标准加欧式卡的工业组装标准,是当今最新的一种工业计算机标准。Compact PCI是在原来PCI总线基础上改造而来,它利用PCI的优点,提供满足工业环境应用要求的高性能核心系统,同时还考虑充分利用传统的总线产品,如ISA、STD、VME或PC/104 来扩充系统的I/O 和其他功能。三、外部总线—-1.RS-232-C总线—-RS-232-C是美国电子工业协会EIA(Electronic Industry Association)制定的一种串行物理接口标准。RS是英文“推荐标准”的缩写,232 为标识号,C表示修改次数。RS-232-C总线标准设有25 条信号线,包括一个主通道和一个辅助通道,在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。RS-232-C标准规定的数据传输速率为每秒50、75、 100、150、300、600、1200、2400、4800、119600、19200波特。RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。—-2.RS-485总线—-在要求通信距离为几十米到上千米时,广泛采用RS-485 串行总线标准。RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。加上总线收发器具有高灵敏度,能检测低至200mV的电压,故传输信号能在千米以外得到恢复。RS-485采用半双工工作方式,任何时候只能有一点处于发送状态,因此,发送电路须由使能信号加以控制。RS-485用于多点互连时非常方便,可以省掉许多信号线。应用RS-485 可以联网构成分布式系统,其允许最多并联32 台驱动器和32台接收器。—-3.IEEE-488总线—-上述两种外部总线是串行总线,而IEEE-488 总线是并行总线接口标准。IEEE-488 总线用来连接系统,如微计算机、数字电压表、数码显示器等设备及其他仪器仪表均可用IEEE-488 总线装配起来。它按照位并行、字节串行双向异步方式传输信号,连接方式为总线方式,仪器设备直接并联于总线上而不需中介单元,但总线上最多可连接15 台设备。最大传输距离为20 米,信号传输速度一般为500KB/s,最大传输速度为1MB/s。—-4.USB总线—通用串行总线USB(universal serial bus)是由Intel、Compaq、Digital、IBM、Microsoft、NEC、Northern Telecom等7 家世界著名的计算机和通信公司共同推出的一种新型接口标准。它基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。它可以为外设提供电源,而不

像普通的使用串、并口的设备需要单独的供电系统。另外,快速是USB技术的突出特点之一,USB的最高传输率可达12Mbps 比串口快100 倍,比并口快近10 倍,而且USB还能支持多媒体。

检查电脑主板故障的常用方法技巧

检查主板故障的常用方法

主板故障往往表现为系统启动失败、屏幕无显示等难以直观判断的故障现象。下面列举的维修方法各有优势和局限性,往往结合使用。
 

如图:无论做什么,都要讲究方法

1.清洁法
可用毛刷轻轻刷去主板上的灰尘,另外,主板上一些插卡、芯片采用插脚形式,常
会因为引脚氧化而接触不良。可用橡皮擦去表面氧化层,重新插接。
2.观察法
反复查看待修的板子,看各插头、插座是否歪斜,电阻、电容引脚是否相碰,表面
是否烧焦,芯片表面是否开裂,主板上的铜箔是否烧断。还要查看是否有异物掉进主板的元器件之间。遇到有疑问的地方,可以借助万用表量一下。触摸一些芯片的表面,如果异常发烫,可换一块芯片试试。
3.电阻、电压测量法
为防止出现意外,在加电之前应测量一下主板上电源+5V与地(GND)之间的电
阻值。最简捷的方法是测芯片的电源引脚与地之间的电阻。未插入电源插头时,该电阻一般应为300Ω,最低也不应低于100Ω。再测一下反向电阻值,略有差异,但不能相差过大。若正反向阻值很小或接近导通,就说明有短路发生,应检查短的原因。产生这类现象的原因有以下几种:
(1)系统板上有被击穿的芯片。一般说此类故障较难排除。例如TTL芯片(LS系列)的+5V连在一起,可吸去+5V引脚上的焊锡,使其悬浮,逐个测量,从而找出故障片子。如果采用割线的方法,势必会影响主板的寿命。
(2)板子上有损坏的电阻电容。
(3)板子上存有导电杂物。当排除短路故障后,插上所有的I/O卡,测量+5V,+12V与地是否短路。特别是+12V与周围信号是否相碰。当手头上有一块好的同样型号的主板时,也可以用测量电阻值的方法测板上的疑点,通过对比,可以较快地发现芯片故障所在。当上述步骤均未见效时,可以将电源插上加电测量。一般测电源的+5V和+12V。当发现某一电压值偏离标准太远时,可以通过分隔法或割断某些引线或拔下某些芯片再测电压。当割断某条引线或拔下某块芯片时,若电压变为正常,则这条引线引出的元器件或拔下来的芯片就是故障所在。
4.拔插交换法
主机系统产生故障的原因很多,例如主板自身故障或I/O总线上的各种插卡故障均
可导致系统运行不正常。采用拔插维修法是确定故障在主板或I/O设备的简捷方法。该方法就是关机将插件板逐块拔出,每拔出一块板就开机观察机器运行状态,一旦拔出某块后主板运行正常,那么故障原因就是该插件板故障或相应I/O总线插槽及负载电路故障。若拔出所有插件板后系统启动仍不正常,则故障很可能就在主板上。采用交换法实质上就是将同型号插件板,总线方式一致、功能相同的插件板或同型号芯片相互芯片相互交换,根据故障现象的变化情况判断故障所在。此法多用于易拔插的维修环境,例如内存自检出错,可交换相同的内存芯片或内存条来确定故障原因。
5.静态、动态测量分析法
(1)静态测量法:让主板暂停在某一特写状态下,由电路逻辑原理或芯片输出与
输入之间的逻辑关系,用万用表或逻辑笔测量相关点电平来分析判断故障原因。
9
(2)动态测量分析法:编制专用论断程序或人为设置正常条件,在机器运行过程
中用示波器测量观察有关组件的波形,并与正常的波形进行比较,判断故障部位。
6.先简单后复杂并结合组成原理的判断法
随着大规模集成电路的广泛应用,主板上的控制逻辑集成度越来越高,其逻辑正确
性越来越难以通过测量来判断。可采用先判断逻辑关系简单的芯片及阻容元件,后将故障集中在逻辑关系难以判断的大规模集成电路芯片。
7.软件诊断法
通过随机诊断程序、专用维修诊断卡及根据各种技术参数(如接口地址),自编专
用诊断程序来辅助硬件维修可达到事半功倍之效。程序测试法的原理就是用软件发送数据、命令,通过读线路状态及某个芯片(如寄存器)状态来识别故障部位。此法往往用于检查各种接口电路故障及具有地址参数的各种电路。但此法应用的前提是CPU及基总线运行正常,能够运行有关诊断软件,能够运行安装于I/O总线插槽上的诊断卡等。
编写的诊断程序要严格、全面有针对性,能够让某些关键部位出现有规律的信号,能够对偶发故障进行反复测试及能显示记录出错情况。

检查主板故障的常用方法主板故障往往表现为系统启动失败、屏幕无显示等难以直观判断的故障现象。下面列举的维修方法各有优势和局限性,往往结合使用。1.清洁法可用毛刷轻轻刷去主板上的灰尘,另外,主板上一些插卡、芯片采用插脚形式,常会因为引脚氧化而接触不良。可用橡皮擦去表面氧化层,重新插接。2.观察法反复查看待修的板子,看各插头、插座是否歪斜,电阻、电容引脚是否相碰,表面是否烧焦,芯片表面是否开裂,主板上的铜箔是否烧断。还要查看是否有异物掉进主板的元器件之间。遇到有疑问的地方,可以借助万用表量一下。触摸一些芯片的表面,如果异常发烫,可换一块芯片试试。3.电阻、电压测量法为防止出现意外,在加电之前应测量一下主板上电源+5V与地(GND)之间的电阻值。最简捷的方法是测芯片的电源引脚与地之间的电阻。未插入电源插头时,该电阻一般应为300Ω,最低也不应低于100Ω。再测一下反向电阻值,略有差异,但不能相差过大。若正反向阻值很小或接近导通,就说明有短路发生,应检查短的原因。产生这类现象的原因有以下几种:(1)系统板上有被击穿的芯片。一般说此类故障较难排除。例如TTL芯片(LS系列)的+5V连在一起,可吸去+5V引脚上的焊锡,使其悬浮,逐个测量,从而找出故障片子。如果采用割线的方法,势必会影响主板的寿命。(2)板子上有损坏的电阻电容。(3)板子上存有导电杂物。当排除短路故障后,插上所有的I/O卡,测量+5V,+12V与地是否短路。特别是+12V与周围信号是否相碰。当手头上有一块好的同样型号的主板时,也可以用测量电阻值的方法测板上的疑点,通过对比,可以较快地发现芯片故障所在。当上述步骤均未见效时,可以将电源插上加电测量。一般测电源的+5V和+12V。当发现某一电压值偏离标准太远时,可以通过分隔法或割断某些引线或拔下某些芯片再测电压。当割断某条引线或拔下某块芯片时,若电压变为正常,则这条引线引出的元器件或拔下来的芯片就是故障所在。4.拔插交换法主机系统产生故障的原因很多,例如主板自身故障或I/O总线上的各种插卡故障均可导致系统运行不正常。采用拔插维修法是确定故障在主板或I/O设备的简捷方法。该方法就是关机将插件板逐块拔出,每拔出一块板就开机观察机器运行状态,一旦拔出某块后主板运行正常,那么故障原因就是该插件板故障或相应I/O总线插槽及负载电路故障。若拔出所有插件板后系统启动仍不正常,则故障很可能就在主板上。采用交换法实质上就是将同型号插件板,总线方式一致、功能相同的插件板或同型号芯片相互芯片相互交换,根据故障现象的变化情况判断故障所在。此法多用于易拔插的维修环境,例如内存自检出错,可交换相同的内存芯片或内存条来确定故障原因。5.静态、动态测量分析法(1)静态测量法:让主板暂停在某一特写状态下,由电路逻辑原理或芯片输出与输入之间的逻辑关系,用万用表或逻辑笔测量相关点电平来分析判断故障原因。9(2)动态测量分析法:编制专用论断程序或人为设置正常条件,在机器运行过程中用示波器测量观察有关组件的波形,并与正常的波形进行比较,判断故障部位。6.先简单后复杂并结合组成原理的判断法随着大规模集成电路的广泛应用,主板上的控制逻辑集成度越来越高,其逻辑正确性越来越难以通过测量来判断。可采用先判断逻辑关系简单的芯片及阻容元件,后将故障集中在逻辑关系难以判断的大规模集成电路芯片。7.软件诊断法通过随机诊断程序、专用维修诊断卡及根据各种技术参数(如接口地址),自编专用诊断程序来辅助硬件维修可达到事半功倍之效。程序测试法的原理就是用软件发送数据、命令,通过读线路状态及某个芯片(如寄存器)状态来识别故障部位。此法往往用于检查各种接口电路故障及具有地址参数的各种电路。但此法应用的前提是CPU及基总线运行正常,能够运行有关诊断软件,能够运行安装于I/O总线插槽上的诊断卡等。编写的诊断程序要严格、全面有针对性,能够让某些关键部位出现有规律的信号,能够对偶发故障进行反复测试及能显示记录出错情况。

引起电脑主板故障的原因及分布情况

电脑主板比较复杂,故障率比较高,故障现象较复杂,分布也较分散。现简介如下:

(1)各种连接线短路、断路故障

各种连接线不该通处短路,该通处断开不通;IC 芯片、电阻、电容、三极管、电感等元器
件引脚断、短路、击穿;连线、引脚与电源、地线短路导通;印刷板线断开、短路以及焊盘
脱落等。这些都是常见故障。

寻找引起电脑主板故障的原因

(2)DMA控制器和辅助电路故障

DMA控制器功能较强,故障率较高;辅助电路芯片及输入信号电路亦容易产生故障。

(3)RS-232 串行接口控制器故障

PC机中的串行接口控制器有独立的,也有与其他接口合在一起的。串行接口故障率较高。

(4)时钟控制器、总线控制器故障时钟控制器、总线控制器、总线驱动器、控制命令芯片,均有可能存在故障。

(5)内存芯片RAM故障

PC机中内存芯片较多,利用率较高,芯片本身故障率也较高。

(6)数据总线故障

主板中的CPU、存储器、I/O 设备的数据传输总线、总线缓冲寄存器/驱动器等,亦有程度
不同的故障发生。

(7)地址总线故障

表现在主板中CPU传送地址的地址总线、地址锁存器及地址缓冲寄存器/驱动器等处。

(8)内存控制信号与地址产生电路故障

指 RAS/CAS行/列地址选通信号、行/列地址延时控制信号及行/列地址的电路出错。

(9)个别插座、引脚松脱等接触不良故障

指芯片与插座因锈蚀、氧化、弹性减弱,引脚脱焊、折断以及开关接触不良而产生的故障。

(10)I/O 通道插槽故障

指 I/O 通道插槽中的铜片脱落、弹性减弱、折断短接,插脚虚焊、脱焊、灰尘过多或掉入异物而产生的故障。

(11)特殊情况引起的故障

指受冲击、强震、电击、电压突然升高、负载不匹配或设计不合理而产生的故障,以及因安
装、设置及使用不当而造成的人为故障。定时器、计数器、中断控制器、并行接口控制器的芯片亦会产生故障,但故障率一般很低。

(12)电源控制器的故障

一般电源输出控制器电流较大,发热量大,如果控制芯片或集成块的质量不佳或散热不良,
故障率较高。以及它周围的电源滤波电容因长期工作在高温环境下,也会因为电解液干涸造
成失效,从而引起电源输出的纹波增大造成主板工作不稳定。
上述故障并非产生在一块主板上,其中有60%左右的故障会导致主板不能启动工作;有35%的故障将使主板的工作不正常;另外5%左右为随机的特殊故障,表现为主板状态不稳定。

常见SDRAM内存条生产厂标志及内存编号的识别

在维修电脑主板的时候或多或少的碰到些由于内存条引起的一些电脑故障,那么这就要求我们维修人员要对内存条要有一些基本的认识,首先要明白内存芯片编号的含义,在其编号中包括以下几个内容:
厂商名称(代号)、容量、类型、工作速度等,有些还有电压和一些特殊标志等。通过对这
些参数的分析比较,就可以正确认识和理解该内存条的规格以及特点。
(1)世界主要内存芯片生产厂商的前缀标志如下:
▲ HY HYUNDAI ——- 现代
▲ MT Micron ——- 美光
▲ GM LG-Semicon
▲ HYB SIEMENS —— 西门子
▲ HM Hitachi —— 日立
▲ MB Fujitsu —— 富士通
▲ TC Toshiba —— 东芝
▲ KM Samsung —— 三星
▲ KS KINGMAX —— 胜创
(2)内存芯片速度编号解释如下:
★ -7 标记的SDRAM 符合 PC143 规范,速度为7ns.
★ –75 标记的SDRAM 符合PC133规范,速度为7.5ns.
★ –8 标记的SDRAM 符合PC125规范,速度为8ns.
★ –7k/-7J/10P/10S 标记的SDRAM 符合PC100 规范,速度为10ns.
★ –10K 标记的SDRAM符合PC66规范,速度为15ns.
(3) 编 号 形 式
HY 5a b ccc dd e f g h ii-jj
其中5a 中的a 表示芯片类别,7—SDRAM; D—DDR SDRAM.
b 表示电压,V—3.3V; U—2.5V; 空白—5V.
CCC 表示容量,16—16M; 65—64M; 129—129M; 256—256M.
dd 表示带宽。
f 表示界面,0—LVTTL; 1—SSTL(3); 2—SSTL_2.
g 表示版本号,B—第三代。
h 表示电源功耗, L—低功耗; 空白—普通型。
ii 表示封装形式, TC—400mil TSOP—H.
jj 表示速度,7—143MHZ; 75—133MHZ;8—125MHZ;
10P—100MHZ(CL=2);10S—100MHZ(CL=3)
10—100MHZ(非PC100)。
例:1) HY57V651620B TC-75
按照解释该内存条应为:SDRAM, 3.3V, 64M, 133MHZ.
2) HY57V653220B TC-7
按照解释该内存条应为:SDRAM, 3.3V, 64M, 143MHZ.

本文出自电脑知识与技术博客 http://mtoou.info

本文链接:http://mtoou.info/sdram-neicuntiao-bianhao/

主板维修知识之时钟电路工作原理

电脑维修知识库提醒:时钟电路的工作原理对学习主板维修时重要的知识内容!
时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450—700 欧之间。
在它的两脚各有1V左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M。总频(OSC)在分频器出来后送到PCI槽的B16 脚和ISA的B30 脚。这两脚叫OSC测试脚。

主板时钟芯片电路

也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。总频线的对地阻值在450—700 欧之间,总频时钟波形幅度一定要大于2V 电平。如果开机数码卡上的OSC 灯不亮,先查晶体两脚的电压和波形;有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常情况下,为分频器坏;有电压无波形,为晶体坏。没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。有了总频,也不一定有频率。总频一定正常,可以说明晶体和分频器基本上正常,主要是晶体的振荡电路已经完全正常,反之就不正常。当总频产生后,分频器开始分频,R2 将分频器分过来的频率送到南桥,在南桥处理过后送到PCI槽B8 和ISA的B20 脚,这两脚叫系统测试脚,这个测试脚可以反映主板上所有的时

时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450—700 欧之间。在它的两脚各有1V左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M。总频(OSC)在分频器出来后送到PCI槽的B16 脚和ISA的B30 脚。这两脚叫OSC测试脚。也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。总频线的对地阻值在450—700 欧之间,总频时钟波形幅度一定要大于2V 电平。如果开机数码卡上的OSC 灯不亮,先查晶体两脚的电压和波形;有电压有波形,在总频线路正常的情况下,为分频器坏;无电压无波形,在分频器电源正常情况下,为分频器坏;有电压无波形,为晶体坏。没有总频,南、北桥、CPU、CACHE、I/O、内存上就没有频率。有了总频,也不一定有频率。总频一定正常,可以说明晶体和分频器基本上正常,主要是晶体的振荡电路已经完全正常,反之就不正常。当总频产生后,分频器开始分频,R2 将分频器分过来的频率送到南桥,在南桥处理过后送到PCI槽B8 和ISA的B20 脚,这两脚叫系统测试脚,这个测试脚可以反映主板上所有的时。

钟是否正常。系统时钟的波形幅度一定要大于1.5V,这两脚的阻值在450—700 欧之间,由南桥提供。

在主板上 RESET和CLK 者是南桥处理的,在总频正常下,如果RESET和CLK 都没有,在南桥电源正常情况下,为南桥坏。主板不开机,RESET 不正常,先查总频。在主板上,时钟线比AD 线要粗一些,并带有弯曲。

电脑主板北桥芯片介绍及主要厂商一览

关于北桥芯片

电脑维修知识库:北桥芯片就是主板上装有散热片的距离CPU插座最近的那个芯片。远处的那个一般是南桥,其都是采用BGA封装。

北桥芯片的位置,芯片就在这个散热器的下面

北桥Northbridge)是基于Intel处理器的个人电脑主板芯片组两枚芯片中的一枚。北桥设计用来处理高速信号,通常处理中央处理器、随机存取存储器、AGP或PCI Express的端口,还有南桥之间的通信。

传统的北桥内置存储器控制器,让处理器连接前端总线,而处理器和存储器总线则跑相同的时钟频率。随后,芯片组分开处理器和存储器总线的频率,让前端总线只代表处理器和北桥之间的通道。

北桥留下来的只剩下AGP或PCI Express控制器和与南桥通信。有时北桥和南桥集成在同颗芯片中,有一些北桥则连绘图处理器也集成进去,而另外支持AGP或PCI Express接口。集成式北桥会侦测到附加在AGP插槽上有安装显卡,并停止其绘图处理器功能。但有些北桥可以允许同时使用集成式显卡和安装外加显卡,作为多显示输出。

Intel Hub Architecture(IHA) 可用来取代南桥与北桥。 IHA 芯片组亦分成二大项: Graphics 和 AGP Memory Controller Hub (GMCH) 与 I/O Controller Hub (ICH)。

近来的发展

AMD在Athlon 64时代,将存储器总线整个拿掉,直接设计到处理器中,让北桥的功能只是支持外加显卡接口,例如AGP和PCI Express x16。由于北桥的重要性降低,有厂商索性将南北桥合并,成为单一芯片组,例如NVIDIA的nForce 4。这样可以减低芯片组的制造成本,但电脑的效能会降低。

主要北桥芯片生产商一览

1.Intel系列。Intel芯片组或北桥芯片名称中带“G”字样的说明整合了图像核心(GPU)

2.VIA系列北桥 ,这是来自台湾威盛公司的

3.SIS矽统系列北桥,这同样也是来自台湾的公司

4.ATI系列,ATI是目前Intel、NVIDIA在图像处理芯片市场上最大的竞争对手(其现在已经被AMD公司收购咯——电脑维系知识库注-2010)

5.NVIDIA,和ATI、Intel一样很牛X的图像芯片公司。(现在主流的台式电脑显卡市场主要有NVIDIA和ATI主导。NVIDIA俗称N卡、ATI简称A卡——电脑维修知识库注-2010)

6.Ali 杨智 已经不见它的产品咯。该行了?有可能!

罗嗦一句:一般集成显卡主板的显示功能就在北桥中,这也是为什么北桥的散热片明显比南桥大的原因之一。