《Ordinary differential equations》
作者 | Philip Hartman 编者 |
---|---|
出版 | Wiley |
参考页数 | |
出版时间 | 1964(求助前请核对) 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 817780958(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

Ⅰ.Preliminaries1
1.Preliminaries,1
2.Basic theorems,2
3.Smooth approximations,6
4.Change of integration variables,7
Notes,7
Ⅱ.Existence8
1.The Picard-Lindelof theorem,8
2.Peano’s existence theorem,10
3.Extension theorem,12
4.H.Kneser’s theorem,15
5.Example of nonuniqueness,18
Notes,23
Ⅲ.Differential inequalities and uniqueness24
1.Gronwall’s inequality,24
2.Maximal and minimal solutions,25
3.Right derivatives,26
4.Differential inequalities,26
5.A theorem of Wintner,29
6.Uniqueness theorems,31
7.van Kampen’s uniqueness theorem,35
8.Egress points and Lyapunov functions,37
9.Successive approximations,40
Notes,44
Ⅳ.Linear differential equations45
1.Linear systems,45
2.Variation of constants,48
3.Reductions to smaller systems,49
4.Basic inequalities,54
5.Constant coefficients,57
6.Floquet theory,60
7.Adjoint systems,62
8.Higher order linear equations,63
9.Remarks on changes of variables,68
APPENDIX.ANALYTIC LINEAR EQUATIONS,70
10.Fundamental matrices,70
11.Simple singularities,73
12.Higher order equations,84
13.A nonsimple singularity,87
Notes,91
Ⅴ.Dependence on initial conditions and parameters93
1.Preliminaries,93
2.Continuity,94
3.Differentiability,95
4.Higher order differentiability,100
5.Exterior derivatives,101
6.Another differentiability theorem,104
7.S- and L-Lipschitz continuity,107
8.Uniqueness theorem,109
9.A lemma,110
10.Proof of Theorem 8.1,111
11.Proof of Theorem 6.1,113
12.First integrals,114
Notes,116
Ⅵ.Total and partial differential equations117
PART Ⅰ.A THEOREM OF FROBENIUS,117
1.Total differential equations,117
2.Algebra of exterior forms,120
3.A theorem of Frobenius,122
4.Proof of Theorem 3.1,124
5.Proof of Lemma 3.1,127
6.The system(1.1),128
PART Ⅱ.CAUCHY’S METHOD OF CHARACTERISTICS,131
7.A nonlinear partial differential equation,131
8.Characteristics,135
9.Existence and uniqueness theorem,137
10.Haar’s lemma and uniqueness,139
Notes,142
Ⅶ.The Poincare-Bendixson theory144
1.Autonomous systems,144
2.Umlaufsatz,146
3.Index of a stationary point,149
4.The Poincare-Bendixson theorem,151
5.Stability of periodic solutions,156
6.Rotation points,158
7.Foci,nodes,and saddle points,160
8.Sectors,161
9.The general stationary point,166
10.A second order equation,174
APPENDIX.POINCARE-BENDIXSON THEORY ON 2-MANIFOLDS,182
11.Preliminaries,182
12.Analogue of the Poincare-Bendixson theorem,185
13.Flow on a closed curve,190
14.Flow on a torus,195
Notes,201
Ⅷ.Plane stationary points202
1.Existence theorems,202
2.Characteristic directions,209
3.Perturbed linear systems,212
4.More general stationary point,220
Notes,227
Ⅸ.Invariant manifolds and linearizations228
1.Invariant manifolds,228
2.The maps Tt,231
3.Modification of F(ξ),232
4.Normal izations,233
5.Invariant manifolds of a map,234
6.Existence of invariant manifolds,242
7.Linearizations,244
8.Linearization of a map,245
9.Proof of Theorem 7.1,250
10.Periodic solution,251
11.Limit cycles,253
APPENDIX.SMOOTH EQUIVALENCE MAPS,256
12.Smooth linearizations,256
13.Proof of Lemma 12.1,259
14.Proof of Theorem 12.2,261
Notes,271
Ⅹ.Perturbed linear systems273
1.The case E = 0,273
2.A topological principle,278
3.A theorem of Wazewski,280
4.Preliminary lemmas,283
5.Proof of Lemma 4.1,290
6.Proof of Lemma 4.2,291
7.Proof of Lemma 4.3,292
8.Asymptotic integrations.Logarithmic scale,294
9.Proof of Theorem 8.2,297
10.Proof of Theorem 8.3,299
11.Logarithmic scale(continued),300
12.Proof of Theorem 11.2,303
13.Asymptotic integration,304
14.Proof of Theorem 13.1,307
15.Proof of Theorem 13.2,310
16.Corollaries and refinements,311
17.Linear higher order equations,314
Notes,320
Ⅺ.Linear second order equations322
1.Preliminaries,322
2.Basic facts,325
3.Theorems of Sturm,333
4.Sturm-Liouville boundary value problems,337
5.Number of zeros,344
6.Nonoscillatory equations and principal solutions,350
7.Nonoscillation theorems,362
8.Asymptotic integrations.Elliptic cases,369
9.Asymptotic integrations.Nonelliptic cases,375
APPENDIX.DISCONJUGATE SYSTEMS,384
10.Disconjugate systems,384
11.Generalizations,396
Notes,401
Ⅻ.Use of implicit function and fixed point theorems404
PART Ⅰ.PERIODIC SOLUTIONS,407
1.Linear equations,407
2.Nonlinear problems,412
PART Ⅱ.SECOND ORDER BOUNDARY VALUE PROBLEMS,418
3.Linear problems,418
4.Nonlinear problems,422
5.A priori bounds,428
PART Ⅲ.GENERAL THEORY,435
6.Basic facts,435
7.Green’s functions,439
8.Nonlinear equations,441
9.Asymptotic integration,445
Notes,447
ⅩⅢ.Dichotomies for solutions of linear equations450
PART Ⅰ.GENERAL THEORY,451
1.Notations and definitions,451
2.Preliminary lemmas,455
3.The operator T,461
4.Slices of ||Py(t)||,465
5.Estimates for ||y(t)||,470
6.Applications to first order systems,474
7.Applications to higher order systems,478
8.P(B,D)-manifolds,483
PART Ⅱ.ADJOINT EQUATIONS,484
9.Associate spaces,484
10.The operator T’,486
11.Individual dichotomies,486
12.P’-admissible spaces for T’,490
13.Applications to differential equations,493
14.Existence of PD-solutions,497
Notes,498
ⅩⅣ.Miscellany on monotony,500
PART Ⅰ.MONOTONE SOLUTIONS,500
1.Small and large solutions,500
2.Monotone solutions,506
3.Second order linear equations,510
4.Second order linear equations(continuation),515
PART Ⅱ.A PROBLEM IN BOUNDARY LAYER THEORY,519
5.The problem,519
6.The case λ>0,520
7.The case λ<0,525
8.The case=0,531
9.Asymptotic behavior,534
PART Ⅲ.GLOBAL ASYMPTOTIC STABILITY,537
10.Global asymptotic stability,537
11.Lyapunov functions,539
12.Nonconstant G,540
13.On Corollary 11.2,545
14.On “J(y)x·x?0 if x·f(y)=0”,548
15.Proof of Theorem 14.2,550
16.Proof of Theorem 14.1,554
Notes,554
HINTS FOR EXERCISES,557
REFERENCES,581
INDEX,607
1964《Ordinary differential equations》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由Philip Hartman 1964 Wiley 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- Ordinary differential equations
- 1968 Aisdell Pub.Co.
-
- ORDINARY DIFFERENTIAL EQUATIONS
- 1969年第2版 JOHN WILEY & SONS NEW YORK
-
- INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS
- 1980 JOHN WILEY SONS
-
- SONATE FUR VIOLONCELLO SOLO=仁契:大提琴奏鸣曲
- 7 COLLECTION LITOLFF
-
- Nonlinear ordinary differential equations
- 1977 Clarendon Press
-
- Ordinary differential equations
- 1971 Holden-Day
-
- Introduction to ordinary differential equations /
- 1982 Harcourt Brace Jovanovich
-
- Ordinary differential equations Second Edition
- 1980 R.E.Krieger Pub.Co.
-
- Ordinary differential equations
- 1926 Dover Publications
-
- Ordinary differential equations
- 1978 Elsevier North-Holland
-
- Ordinary and delay differential equations
- 1977 Springer-Verlag
-
- Ordinary differential equations and stability theory
- 1980 Tata McGraw-Hill
-
- ORDINARY DIFFERENTIAL EQUATIONS
- 1973 THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
-
- LECTURES ON ORDINARY DIFFERENTIAL EQUATIONS
- 1970 ACADEMIC PRESS
-
- Ordinary differential equations
- 1998 World Pub.Corp.
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD