《THERMODYNAMICS AND AN INTRODUCTON TO THERMOSTATISTICS SECOND EDITION》求取 ⇩

PART ⅠGENERAL PRINCIPLES OF CLASSICAL THERMODYNAMICS1

Introduction The Nature of Thermodynamics and the Basis of Thermostatistics2

1THE PROBLEM AND THE POSTULATES5

1.1 The Temporal Nature of Macroscopic Measurements5

1.2 The Spatial Nature of Macroscopic Measurements6

1.3 The Composition of Thermodynamic Systems9

1.4 The Internal Energy11

1.5 Thermodynamic Equilibrium13

1.6 Walls and Constraints15

1.7 Measurability of the Energy16

1.8 Quantitative Definition of Heat—Units18

1.9 The Basic Problem of Thermodynamics25

1.10 The Entropy Maximum Postulates27

2THE CONDITIONS OF EQUILIBRIUM35

2.1 Intensive Parameters35

2.2 Equations of State37

2.3 Entropic Intensive Parameters40

2.4 Thermal Equilibrium—Temperature43

2.5 Agreement with Intuitive Concept of Temperature45

2.6 Temperature Units46

2.7 Mechanical Equilibrium49

2.8 Equilibrium with Respect to Matter Flow54

2.9 Chemical Equilibrium56

3SOME FORMAL RELATIONSHIPS,AND SAMPLE SYSTEMS59

3.1 The Euler Equation59

3.2 The Gibbs-Duhem Relation60

3.3 Summary of Formal Structure63

3.4 The Simple Ideal Gas and Multicomponent Simple Ideal Gases66

3.5 The “Ideal van der Waals Fluid”74

3.6 Electromagnetic Radiation78

3.7 The “Rubber Band”80

3.8 Unconstrainable Variables; Magnetic Systems81

3.9 Molar Heat Capacity and Other Derivatives84

4REVERSIBLE PROCESSES AND THE MAXIMUM WORK THEOREM91

4.1 Possible and Impossible Processes91

4.2 Quasi-Static and Reversible Processes95

4.3 Relaxation Times and Irreversibility99

4.4 Heat Flow:Coupled Systems and Reversal of Processes101

4.5 The Maximum Work Theorem103

4.6 Coefficients of Engine,Refrigerator,and Heat Pump Performance113

4.7 The Carnot Cycle118

4.8 Measurability of the Temperature and of the Entropy123

4.9 Other Criteria of Engine Performance; Power Output and“Endoreversible Engines”125

4.10 Other Cyclic Processes128

5ALTERNATIVE FORMULATIONS AND LEGENDRE TRANSFORMATIONS131

5.1 The Energy Minimum Principle131

5.2 Legendre Transformations137

5.3 Thermodynamic Potentials146

5.4 Generalized Massieu Functions151

6THE EXTREMUM PRINCIPLE IN THE LEGENDRE TRANSFORMED REPRESENTATIONS153

6.1 The Minimum Principles for the Potentials153

6.2 The Helmholtz Potential157

6.3 The Enthalpy; The Joule-Thomson or “Throttling” Process160

6.4 The Gibbs Potential; Chemical Reactions167

6.5 Other Potentials172

6.6 Compilations of Empirical Data; The Enthalpy of Formation173

6.7 The Maximum Principles for the Massieu Functions179

7MAXWELL RELATIONS181

7.1 The Maxwell Relations181

7.2 A Thermodynamic Mnemonic Diagram183

7.3 A Procedure for the Reduction of Derivatives in Single-Component Systems186

7.4 Some Simple Applications190

7.5 Generalizations:Magnetic Systems199

8STABILITY OF THERMODYNAMIC SYSTEMS203

8.1 Intrinsic Stability of Thermodynamic Systems203

8.2 Stability Conditions for Thermodynamics Potentials207

8.3 Physical Consequences of Stability209

8.4 Le Chatelier’s Principle; The Qualitative Effect of Fluctuations210

8.5 The Le Chatelier-Braun Principle212

9FIRST-ORDER PHASE TRANSITIONS215

9.1 First-Order Phase Transitions in Single-Component Systems215

9.2 The Discontinuity in the Entropy-Latent Heat222

9.3 The Slope of Coexistence Curves; the Clapeyron Equation228

9.4 Unstable Isotherms and First-Order Phase Transitions233

9.5 General Attributes of First-Order Phase Transitions243

9.6 First-Order Phase Transitions in Multicomponent Systems—Gibbs Phase Rule245

9.7 Phase Diagrams for Binary Systems248

10CRITICAL PHENOMENA255

10.1 Thermodynamics in the Neighborhood of the Critical Point255

10.2 Divergence and Stability261

10.3 Order Parameters and Critical Exponents263

10.4 Classical Theory in the Critical Region; Landau Theory265

10.5 Roots of the Critical Point Problem270

10.6 Scaling and Universality272

11THE NERNST POSTULATE277

11.1 Nernst’s Postulate,and the Principle of Thomsen and Bertholot277

11.2 Heat Capacities and Other Derivatives at Low Temperatures280

11.3 The “Unattainability” of Zero Temperature281

12SUMMARY OF PRINCIPLES FOR GENERAL SYSTEMS283

12.1 General Systems283

12.2 The Postulates283

12.3 The Intensive Parameters284

12.4 Legendre Transforms285

12.5 Maxwell Relations285

12.6 Stability and Phase Transitions286

12.7 Critical Phenomena287

12.8 Properties at Zero Temperature287

13PROPERTIES OF MATERIALS289

13.1 The General Ideal Gas289

13.2 Chemical Reactions in Ideal Gases292

13.3 Small Deviations from “Ideality”—The Virial Expansion297

13.4 The “Law of Corresponding States” for Gases299

13.5 Dilute Solutions:Osmotic Pressure and Vapor Pressure302

13.6 Solid Systems305

14IRREVERSIBLE THERMODYNAMICS307

14.1 General Remarks307

14.2 Affinities and Fluxes308

14.3 Purely-Resistive and Linear Systems312

14.4 The Theoretical Basis of the Onsager Reciprocity314

14.5 Thermoelectric Effects316

14.6 The Conductivities319

14.7 The Seebeck Effect and the Thermoelectric Power320

14.8 The Peltier Effect323

14.9 The Thomsen Effect324

ART ⅡTATISTICAL MECHANICS329

15STATISTICAL MECHANICS IN THE ENTROPY REPRESENTATION:THE MICROCANONICAL FORMALISM329

15.1 Physical Significance of the Entropy for Closed Systems329

15.2 The Einstein Model of a Crystalline Solid333

15.3 The Two-State System337

15.4 A Polymer Model—The Rubber Band Revisited339

15.5 Counting Techniques and their Circumvention;High Dimensionality343

16THE CANONICAL FORMALISM; STATISTICAL MECHANICS IN HELMHOLTZ REPRESENTATION349

16.1 The Probability Distribution349

16.2 Additive Energies and Factorizability of the Partition Sum353

16.3 Internal Modes in a Gas355

16.4 Probabilities in Factorizable Systems358

16.5 Statistical Mechanics of Small Systems:Ensembles360

16.6 Density of States and Density-of-Orbital States362

16.7 The Debye Model of Non-metallic Crystals364

16.8 Electromagnetic Radiation368

16.9 The Classical Density of States370

16.10 The Classical Ideal Gas372

16.11 High Temperature Properties—The Equipartition Theorem375

17ENTROPY AND DISORDER; GENERALIZED CANONICAL FORMULATIONS379

17.1 Entropy as a Measure of Disorder379

17.2 Distributions of Maximal Disorder382

17.3 The Grand Canonical Formalism385

18QUANTUM FLUIDS393

18.1 Quantum Particles; A “Fermion Pre-Gas Model”393

18.2 The Ideal Fermi Fluid399

18.3 The Classical Limit and the Quantum Criteria402

18.4 The Strong Quantum Regime; Electrons in a Metal405

18.5 The Ideal Bose Fluid410

18.6 Non-Conserved Ideal Bose Fluids; Electromagnetic Radiation Revisited412

18.7 Bose Condensation413

19FLUCTUATIONS423

19.1 The Probability Distribution of Fluctuations423

19.2 Moments and The Energy Fluctuations424

19.3 General Moments and Correlation Moments426

20VARIATIONAL PROPERTIES,PERTURBATION EXPANSIONS,AND MEAN FIELD THEORY433

20.1 The Bogoliubov Variational Theorem433

20.2 Mean Field Theory440

20.3 Mean Field Theory in Generalized Representation;the Binary Alloy449

PART ⅢFOUNDATIONS455

21POSTLUDE:SYMMETRY AND THE CONCEPTUAL FOUNDATIONS OF THERMOSTATISTICS455

21.1 Statistics455

21.2 Symmetry458

21.3 Noether’s Theorem460

21.4 Energy,Momentum and Angular Momentum; the Generalized “First Law” of Thermodynamics461

21.5 Broken Symmetry and Goldstone’s Theorem462

21.6 Other Broken Symmetry Coordinates—Electric and Magnetic Moments465

21.7 Mole Numbers and Gauge Symmetry466

21.8 Time Reversal,the Equal Probability of Microstates,and the Entropy Principle467

21.9 Symmetry and Completeness469

APPENDIX ASOME RELATIONS INVOLVING PARTIAL DERIVATIVES473

A.1 Partial Derivatives473

A.2 Taylor’s Expansion474

A.3 Differentials475

A.4 Composite Functions475

A.5 Implicit Functions476

APPENDIX BMAGNETIC SYSTEMS479

GENERAL REFERENCES485

INDEX487

1985《THERMODYNAMICS AND AN INTRODUCTON TO THERMOSTATISTICS SECOND EDITION》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由HERBERT B.CALLEN 1985 JOHN WILEY & SONS 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。