《OPTICAL ELECTRONICS IN MODERN COMMUNICATIONS》求取 ⇩

第1章电磁理论1

第2章光线和光束的传输39

第3章光束在光纤中的传输76

第4章光学谐振器121

第5章辐射与原子系统的相互作用159

第6章激光振荡理论及其在连续区和脉冲区的控制185

第7章一些特殊的激光器系统242

第8章二次谐波产生和参量振荡273

第9章激光束的电光调制326

第10章光产生和光探测中的噪声372

第11章光辐射的探测413

第12章光和声的相互作用474

第13章光学介电波导——周期性波导中的模传输和模耦合491

第14章全息术和光学数据存储541

第15章半导体激光器的理论和应用558

第16章先进的半导体激光器——量子阱激光器,分布反馈式激光器,垂直腔表面发射激光器604

第17章相位共轭光学的理论和应用639

第18章光折变介质中的双光束耦合和相位共轭668

第19章光孤子693

第20章量子光学、量子噪声和压缩态的经典处理703

Chapter 1ELECTROMAGNETIC THEORY1

1.0 Introduction1

1.1Complex-Function Formalism1

Time-Averaging of Sinusoidal Products3

1.2Considerations of Energy and Power in Electromagnetic Fields3

Dipolar Dissipation in Harmonic Fields5

1.3Wave Propagation in Isotropic Media7

Power Flow in Harmonic Fields10

1.4Wave Propagation in Crystals—The Index Ellipsoid12

Birefringence13

Index Ellipsoid14

Normal (index) Surfaces17

1.5Jones Calculus and Its Application to Propagation in Optical Systems with Birefringent Crystals17

Intensity Transmission24

Circular Polarization Representation26

Faraday Rotation27

1.6Diffraction of Electromagnetic Waves30

PROBLEMS34

REFERENCES38

Chapter 2THE PROPAGATION OF RAYS AND BEAMS39

2.0 Introduction39

2.1Lens Waveguide39

Identical-Lens Waveguide44

2.2Propagation of Rays Between Mirrors45

Reentrant Rays45

2.3 Rays in Lenslike Media46

2.4 Wave Equation in Quadratic Index Media48

2.5 Gaussian Beams in a Homogeneous Medium50

2.6Fundamental Gaussian Beam in a Lenslike Medium—The ABCD Law53

Transformation of the Gaussian Beam—The ABCD Law54

2.7 A Gaussian Beam in Lens Waveguide57

2.8 High-Order Gaussian Beam Modes in a Homogeneous Medium57

2.9 High-Order Gaussian Beam Modes in Quadratic Index Media58

Pulse Spreading in Quadratic Index Glass Fibers63

2.10 Propagation in Media with a Quadratic Gain Profile65

2.11Elliptic Gaussian Beams66

Elliptic Gaussian Beams in a Quadratic Lenslike Medium69

2.12Diffraction Integral for a Generalized Paraxial A,B,C,D System70

PROBLEMS72

REFERENCES74

Chapter 3PROPAGATION OF OPTICAL BEAMS IN FIBERS76

3.0 Introduction76

3.1 Wave Equations in Cylindrical Coordinates77

3.2The Step-Index Circular Waveguide80

Mode Characteristics and Cutoff Conditions83

3.3Linearly Polarized Modes89

Power Flow and Power Density96

3.4Optical Pulse Propagation and Pulse Spreading in Fibers98

Frequency Chirp105

3.5Compensation for Group Velocity Dispersion106

Compensation for Pulse Broadening by Fibers with Opposite Dispersion108

Compensation for Pulse Broadening by Phase Conjugation108

3.6 Analogy of Spatial Diffraction and Temporal Dispersion113

3.7Attenuation in Silica Fibers115

PROBLEMS116

REFERENCES119

Chapter 4OPTICAL RESONATORS121

4.0Introduction121

Mode Density in Optical Resonators122

4.1 Fabry-Perot Etalon125

4.2 Fabry-Perot Etalons as Optical Spectrum Analyzers129

4.3Optical Resonators with Spherical Mirrors132

Optical Resonator Algebra133

The Symmetrical Mirror Resonator134

4.4 Mode Stability Criteria135

4.5Modes in a Generalized Resonator—The Self-Consistent Method138

Stability of the Resonator Modes139

4.6 Resonance Frequencies of Optical Resonators140

4.7 Losses in Optical Resonators143

4.8Optical Resonators—Diffraction Theory Approach145

Equivalent Resonator Systems149

4.9Mode Coupling154

Equivalent Resonator Systems149

Mode Solution by Numerical Iteration151

PROBLEMS156

REFERENCES158

Chapter 5INTERACTION OF RADIATION AND ATOMIC SYSTEMS159

5.0 Introduction159

5.1Spontaneous Transitions Between Atomic Levels—Homogeneous and Inhomogeneous Broadening159

The Concept of Spontaneous Emission160

Lineshape Function—Homogeneous and Inhomogeneous Broadening161

Homogeneous and Inhomogeneous Broadening162

5.2 Induced Transitions165

5.3 Absorption and Amplification168

5.4 Derivation of x'(v)171

5.5 The Significance of x(v)174

5.6 Gain Saturation in Homogeneous Laser Media176

5.7Gain Saturation in Inhomogeneous Laser Media179

PROBLEMS182

REFERENCES183

Chapter 6THEORY OF LASER OSCILLATION AND ITS CONTROL IN THE CONTINUOUS AND PULSED REGIMES185

6.0 Introduction185

6.1 Fabry-Perot Laser185

6.2 Oscillation Frequency189

6.3 Three- and Four-Level Lasers192

6.4Power in Laser Oscillators194

Rate Equations194

6.5 Optimum Output Coupling in Laser Oscillators197

6.6Multimode Laser Oscillation and Mode Locking201

Mode Locking203

Methods of Mode Locking206

Theory of Mode Locking210

6.7Mode Locking in Homogeneously Broadened Laser Systems212

Transfer Function of the Gain Medium213

Transfer Function of the Loss Cell213

Mode Locking by Phase Modulation217

6.8Pulse Length Measurement and Narrowing of Chirped Pulses218

Pulse Narrowing by Chirping and Compression222

The Grating Pair Compressor226

6.9Giant Pulse (Q-switched) Lasers227

Methods of Q-Switching233

6.10Hole-Burning and the Lamb Dip in Doppler-Broadened Gas Lasers235

PROBLEMS238

REFERENCES239

Chapter 7SOME SPECIFIC LASER SYSTEMS242

7.0 Introduction242

7.1 Pumping and Laser Efficiency242

7.2Ruby Laser243

7.3 Nd3+:YAG Laser248

7.4 Neodymium-Glass Laser251

7.5 He-Ne Laser255

7.6Carbon Dioxide Laser257

7.7 Ar+ Laser259

7.8 Excimer Lasers260

7.9 Organic-Dye Lasers262

7.10 High-Pressure Operation of Gas Lasers267

7.11The Er-Silica Laser270

PROBLEMS270

REFERENCES270

Chapter 8SECOND-HARMONIC GENERATION AND PARAMETRIC OSCILLATION273

8.0 Introduction273

8.1 On the Physical Origin of Nonlinear Polarization273

8.2 Formalism of Wave Propagation in Nonlinear Media282

8.3Optical Second-Harmonic Generation285

Phase-Matching in Second-Harmonic Generation286

Experimental Verification of Phase-Matching290

Second-Harmonic Generation with Focused Gaussian Beams291

Second-Harmonic Generation with a Depleted Input293

8.4 Second-Harmonic Generation Inside the Laser Resonator295

8.5 Photon Model of Second-Harmonic Generation299

8.6 Parametric Amplification300

8.7 Phase-Matching in Parametric Amplification306

8.8 Parametric Oscillation308

8.9 Frequency Tuning in Parametric Oscillation311

8.10 Power Output and Pump Saturation in Optical Parametric Oscillators314

8.11 Frequency Up-Conversion316

8.12Quasi Phase-Matching319

Quasi Phase-Matching in Crystal Dielectric Waveguides320

PROBLEMS322

REFERENCES323

Chapter 9ELECTROOPTIC MODULATION OF LASER BEAMS326

9.0 Introduction326

9.1Electrooptic Effect326

The General Solution333

9.2 Electrooptic Retardation341

9.3 Electrooptic Amplitude Modulation344

9.4 Phase Modulation of Light347

9.5 Transverse Electrooptic Modulators348

9.6High-Frequency Modulation Considerations349

Transit-Time Limitations to High-Frequency Electrooptic Modulation350

Traveling-Wave Modulators351

9.7 Electrooptic Beam Deflection353

9.8Electrooptic Modulation—Coupled Wave Analysis356

The Wave Equation358

9.9Phase Modulation360

Amplitude Modulation (advanced topic)364

PROBLEMS367

REFERENCES370

Chapter 10NOISE IN OPTICAL DETECTION AND GENERATION372

10.0 Introduction372

10.1Limitations Due to Noise Power373

Measurement of Optical Power373

10.2Noise—Basic Definitions and Theorems376

Wiener-Khintchine Theorem378

10.3 The Spectral Density Function of a Train of Randomly Occurring Events379

10.4 Shot Noise381

10.5Johnson Noise383

Statistical Derivation of Johnson Noise386

10.6 Spontaneous Emission Noise in Laser Oscillators388

10.7Phasor Derivation of the Laser Linewidth393

The Phase Noise393

The Laser Field Spectrum396

10.8Coherence and Interference401

Delayed Self-Heterodyning of Laser Fields404

Special Case td>>Tc406

10.9Error Probability in a Binary Pulse Code Modulation System407

PROBLEMS410

REFERENCES411

Chapter 11DETECTION OF OPTICAL RADIATION413

11.0 Introduction413

11.1 Optically Induced Transition Rates414

11.2 Photomultiplier415

11.3Noise Mechanisms in Photomultipliers417

Mimimum Detectable Power in Photomultipliers—Video Detection418

Signal-Limited Shot Noise420

11.4Heterodyne Detection with Photomultipliers421

Limiting Sensitivity as a Result of the Particle Nature of Light423

11.5Photoconductive Detectors425

Generation Recombination Noise in Photoconductive Detectors428

Heterodyne Detection in Photoconductors430

11.6 The p-n Junction432

11.7Semiconductor Photodiodes436

Frequency Response of Photodiodes438

Detection Sensitivity of Photodiodes443

11.8 The Avalanche Photodiode446

11.9 Power Fluctuation Noise in Lasers449

11.10 Infrared Imaging and Background-Limited Detection454

11.11 Optical Amplification in Fiber Links461

PROBLEMS470

REFERENCES471

Chapter 12INTERACTION OF LIGHT AND SOUND474

12.0 Introduction474

12.1 Scattering of Light by Sound474

12.2Particle Picture of Bragg Diffraction of Light by Sound477

Doppler Derivation of the Frequency Shift478

12.3 Bragg Diffraction of Light by Acoustic Waves—Analysis479

12.4Deflection of Light by Sound486

PROBLEMS489

REFERENCES490

Chapter 13PROPAGATION AND COUPLING OF MODES IN OPTICAL DIELECTRIC WAVEGUIDES—PERIODIC WAVEGUIDES491

13.0 Introduction491

13.1Waveguide Modes—A General Discussion492

Confined Modes in a Symmetric Slab Waveguide494

13.2TE and TM Modes in an Asymmetric Slab Waveguide499

TE Modes499

TM Modes501

13.3 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides502

13.4Periodic Waveguide504

Some General Properties of the Coupled Mode Equations506

13.5Coupled-Mode Solutions509

Numerical Example512

13.6 Periodic Waveguides as Optical Filters and Reflectors—Periodic Fibers512

13.7 Electrooptic Modulation and Mode Coupling in Dielectric Waveguides515

13.8 Directional Coupling521

13.9 The Eigenmodes of a Coupled Waveguide System (supermodes)526

13.10 Laser Arrays531

PROBLEMS538

REFERENCES539

Chapter 14HOLOGRAPHY AND OPTICAL DATA STORAGE541

14.0 Introduction541

14.1The Mathematical Basis of Holography542

The Holographic Process Viewed as Bragg Diffraction542

Basic Holography Formalism545

14.2The Coupled Wave Analysis of Volume Holograms546

Multihologram Recording and Readout—Crosstalk549

Wavelength Multiplexing552

Crosstalk in Data-Bearing Holograms552

PROBLEMS556

REFERENCES557

Chapter 15SEMICONDUCTOR LASERS—THEORY AND APPLICATIONS558

15.0 Introduction558

15.1Some Semiconductor Physics Background559

The Fermi-Dirac Distribution Law562

15.2 Gain and Absorption in Semiconductor (laser) Media565

15.3 GaAs/Ga1—xA1xAs Lasers570

15.4Some Real Laser Structures577

Quaternary GaInAsP Semiconductor Lasers578

Power Output of Injection Lasers581

15.5 Direct-Current Modulation of Semiconductor Lasers582

15.6Gain Suppression and Frequency Chirp in Current-Modulated Semiconductor Lasers587

Amplitude-phase coupling592

The Field Spectrum of a Chirping Laser594

15.7Integrated Optoelectronics596

PROBLEMS599

REFERENCES601

Chapter 16ADVANCED SEMICONDUCTOR LASERS: QUANTUM WELL LASERS,DISTRIBUTED FEEDBACK LASERS, VERTICAL CAVITY SURFACE EMITTING LASERS604

16.0 Introduction604

16.1Carriers in Quantum Wells (Advanced Topic)605

The Density of States608

16.2Gain in Quantum Well Lasers610

Multiquantum Well Laser614

16.3Distributed Feedback Lasers616

Oscillation Condition619

Gain-Coupled Distributed Feedback Lasers626

16.4Vertical Cavity Surface Emitting Semiconductor Lasers628

The Oscillation Condition of a Vertical Cavity Laser630

The Bragg Mirror631

The Oscillation Frequencies633

PROBLEMS636

REFERENCES637

Chapter 17PHASE CONJUGATE OPTICS—THEORY AND APPLICATIONS639

17.0 Introduction and Background639

17.1 The Distortion Correction Theorem640

17.2 The Generation of Phase Conjugate Waves641

17.3The Coupled-Mode Formulation of Phase Conjugate Optics643

Some Consideration of Units648

17.4 Some Experiments Involving Phase Conjugation649

17.5 Optical Resonators with Phase Conjugate Reflectors651

17.6The ABCD Formalism of Phase Conjugate Optical Resonators653

The ABCD Matrix of a Phase Conjugate Mirror653

17.7 Dynamic Distortion Correction Within a Laser Resonator655

17.8 Holographic Analogs of Phase Conjugate Optics657

17.9 Imaging Through a Distorted Medium659

17.10 Image Processing by Four-Wave Mixing661

17.11 Compensation of Fiber Dispersion665

PROBLEMS665

REFERENCES665

Chapter 18TWO-BEAM COUPLING AND PHASE CONJUGATION IN PHOTOREFRACTIVE MEDIA668

18.0 Introduction668

18.1 Two-Wave Coupling in a Fixed Grating669

18.2The Photorefractive Effect—Two Beam Coupling671

The Grating Formation680

Refractive Two-Beam Coupling681

Two-Beam Coupling—Symmetric Geometry683

18.3 Photorefractive Self-Pumped Phase Conjugation684

18.4Applications of Photorefractive Oscillators686

Rotation Sensing686

Mathematical and Logic Operations of Images688

PROBLEMS691

REFERENCES691

Chapter 19OPTICAL SOLITONS693

19.0 Introduction693

19.1The Mathematical Description of Solitons693

The Wave Equation695

Numerical Example—Optical Solitons in Silica Fibers699

PROBLEMS700

REFERENCES701

Chapter 20A CLASSICAL TREATMENT OF QUANTUM OPTICS, QUANTUM NOISE, AND SQUEEZING703

20.0 Introduction703

20.1The Quantum Uncertainty Goes Classical703

The Uncertainty Principle704

The Energy of an Electromagnetic Mode709

Uncertainty in Energy709

Phase Uncertainty710

Fluctuation of Photoelectron Number710

Minimum Detectable Optical Power Increment711

20.2 Squeezing of Optical Fields712

Experimental Demonstrations of Squeezing716

REFERENCES721

Appendix ATHE KRAMERS-KRONIG RELATIONS723

Appendix BTHE ELECTROOPTIC EFFECT IN CUBIC 43m CRYSTALS726

Appendix CNOISE IN TRAVELING WAVE LASER AMPLIFIERS730

Appendix DTRANSFORMATION OF A COHERENT ELECTROMAGNETIC FIELD BY A THIN LENS734

Index737

《OPTICAL ELECTRONICS IN MODERN COMMUNICATIONS》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。