《SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELING》求取 ⇩

Chapter 1 Introduction and Historical Perspective1

1.1 Introduction1

1.2 Integrated Circuits and the Planar Process—Key Inventions That Made It All Possible7

1.3 Semiconductors13

1.4 Semiconductor Devices33

1.4.1 PN Diodes33

1.4.2 MOS Transistors36

1.4.3 Bipolar Junction Transistors39

1.5 Semiconductor Technology Families41

1.6 Modern Scientific Discovery—Experiments, Theory, and Computer Simulation43

1.7 The Plan For This Book45

1.8 Summary of Key Ideas46

1.9 References46

1.10 Problems47

Chapter 2 Modern CMOS Technology49

2.1 Introduction49

2.2 CMOS Process How50

2.2.1 The Beginning—Choosing a Substrate51

2.2.2 Active Region Formation52

2.2.3 Process Option for Device Isolation—Shallow Trench Isolation57

2.2.4 N and P Well Formation60

2.2.5 Process Options for Active Region and Well Formation63

2.2.6 Gate Formation71

2.2.7 Tip or Extension (LDD) Formation76

2.2.8 Source/Drain Formation80

2.2.9 Contact and Local Interconnect Formation82

2.2.10 Multilevel Metal Formation84

2.3 Summary of Key Ideas90

2.4 Probems91

Chapter 3 Crystal Growth, Wafer Fabrication and Basic Properties of Silicon Wafers93

3.1 Introduction93

3.2 Historical Development and Basic Concepts93

3.2.1 Crystal Structure94

3.2.2 Defects in Crystals97

3.2.3 Raw Materials and Purification101

3.2.4 Czochralski and Float-Zone Crystal Growth Methods102

3.2.5 Wafer Preparation and Specification105

3.3 Manufacturing Methods and Equipment109

3.4 Measurement Methods111

3.4.1 Electrical Measurements111

3.4.1.1 Hot Point Probe112

3.4.1.2 Sheet Resistance113

3.4.1.3 Hall Effect Measurements115

3.4.2 Physical Measurements117

3.4.2.1 Defect Etches117

3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR)118

3.4.2.3 Electron Microscopy119

3.5 Models and Simulation121

3.5.1 Czochralski Crystal Growth122

3.5.2 Dopant Incorporation during CZ Crystal Growth125

3.5.3 Zone Refining and FZ Growth128

3.5.4 Point Defects131

3.5.5 Oxygen in Silicon138

3.5.6 Carbon in Silicon142

3.5.7 Simulation143

3.6 Limits and Future Trends in Technologies and Models144

3.7 Summary of Key Ideas146

3.8 References147

3.9 Problems148

Chapter 4 Semiconductor Manufacturing—Clean Rooms, Wafer Cleaning,and Gettering151

4.1 Introduction151

4.2 Historical Development and Basic Concepts154

4.2.1 Level 1 Contamination Reduction: Clean Factories157

4.2.2 Level 2 Contamination Reduction: Wafer Cleaning159

4.2.3 Level 3 Contamination Reduction: Gettering161

4.3 Manufacturing Methods and Equipment165

4.3.1 Level 1 Contamination Reduction: Clean Factories165

4.3.2 Level 2 Contamination Reduction: Wafer Cleaning166

4.3.3 Level 3 Contamination Reduction: Gettering167

4.4 Measurement Methods169

4.4.1 Level 1 Contamination Reduction: Clean Factories169

4.4.2 Level 2 Contamination Reduction: Wafer Cleaning173

4.4.3 Level 3 Contamination Reduction: Gettering176

4.5 Models and Simulation180

4.5.1 Level 1 Contamination Reduction: Clean Factories181

4.5.2 Level 2 Contamination Reduction: Wafer Cleaning184

4.5.3 Level 3 Contamination Reduction: Gettering186

4.5.3.1 Step 1: Making the Metal Atoms Mobile186

4.5.3.2 Step 2: Metal Diffusion to the Gettering Site187

4.5.3.3 Step 3: Trapping the Metal Atoms at the Gettering Site190

4.6 Limits and Future Trends in Technologies and Models193

4.7 Summary of Key Ideas196

4.7 References196

4.9 Problems198

Chapter 5 Lithography201

5.1 Introduction201

5.2 Historical Development and Basic Concepts203

5.2.1 Light Sources206

5.2.2 Wafer Exposure Systems208

5.2.2.1 Optics Basics—Ray Tracing and Diffraction209

5.2.2.2 Projection Systems (Fraunhofer Diffraction)212

5.2.2.3 Contact and Proximity Systems (Fresnel Diffraction)219

5.2.3 Photoresists221

5.2.3.1 g-line and i-line Resists223

5.2.3.2 Deep Ultraviolet (DUV) Resists225

5.2.3.3 Basic Properties and Characterization of Resists227

5.2.4 Mask Engineering—Optical Proximity Correction and Phase Shifting230

5.3 Manufacturing Methods and Equipment234

5.3.1 Wafer Exposure Systems234

5.3.2 Photoresists238

5.4 Measurement Methods241

5.4.1 Measurement of Mask Features and Defects242

5.4.2 Measurement of Resist Patterns244

5.4.3 Measurement of Etched Features244

5.5 Models and Simulation246

5.5.1 Wafer Exposure Systems247

5.5.2 Optical Intensity Pattern in the Photoresist253

5.5.3 Photoresist Exposure259

5.5.3.1 g-line and i-line DNQ Resists259

5.5.3.2 DUV Resists263

5.5.4 Postexposure Bake (PEB)264

5.5.4.1 g-line and i-line DNQ Resists264

5.5.4.2 DUV Resists266

5.5.5 Photoresist Developing267

5.5.6 Photoresist Postbake270

5.5.7 Advanced Mask Engineering271

5.6 Limits and Future Trends in Technologies and Models272

5.6.1 Electron Beam Lithography273

5.6.2 X-ray Lithography275

5.6.3 Advanced Mask Engineering277

5.6.4 New Resists278

5.7 Summary of Key Ideas281

5.8 References281

5.9 Problems283

Chapter 6 Thermal Oxidation and the Si/SiO2 Interface287

6.1 Introduction287

6.2 Historical Development and Basic Concepts290

6.3 Manufacturing Methods and Equipment296

6.4 Measurement Methods298

6.4.1 Physical Measurements299

6.4.2 Optical Measurements299

6.4.3 Electrical Measurements—The MOS Capacitor301

6.5 Models and Simulation312

6.5.1 First-Order Planar Growth Kinetic —The Linear Parabolic Model313

6.5.2 Other Models for Planar Oxidation Kinetics322

6.5.3 Thin Oxide SiO2 Growth Kinetics326

6.5.4 Dependence of Growth Kinetics on Pressure328

6.5.5 Dependence of Growth Kinetics on Crystal Orientation329

6.5.6 Mixed Ambient Growth Kinetics332

6.5.72D SiO2 Growth Kinetics333

6.5.8 Advanced Point Defect Based Models for Oxidation339

6.5.9 Substrate Doping Effects343

6.5.10 Polysilicon Oxidation345

6.5.11 Si3N4 Growth and Oxidation Kinetics347

6.5.12 Silicide Oxidation350

6.5.13 Si/SiO2 Interface Charges352

6.5.14 Complete Oxidation Module Simulation357

6.6 Limits and Future Trends in Technologies and Models359

6.7 Summary of Key Ideas361

6.8 References361

6.9 Problems364

Chapter 7 Dopant Diffusion371

7.1 Introduction371

7.2 Historical Development and Basic Concepts374

7.2.1 Dopant Solid Solubility375

7.2.2 Diffusion from a Macroscopic Viewpoint377

7.2.3 Analytic Solutions of the Diffusion Equation379

7.2.4 Gaussian Solution in an Infinite Medium380

7.2.5 Gaussian Solution Near a Surface381

7.2.6 Error-Function Solution in an Infinite Medium382

7.2.7 Error-Function Solution Near a Surface384

7.2.8 Intrinsic Diffusion Coefficients of Dopants in Silicon386

7.2.9 Effect of Successive Diffusion Steps388

7.2.10 Design and Evaluation of Diffused Layers389

7.2.11 Summary of Basic Diffusion Concepts392

7.3 Manufacturing Methods and Equipment392

7.4 Measurement Methods395

7.4.1 SIMS396

7.4.2 Spreading Resistance397

7.4.3 Sheet Resistance398

7.4.4 Capacitance Voltage399

7.4.5 TEM Cross Section399

7.4.62D Electrical Measurements Using Scanning Probe Microscopy400

7.4.7 Inverse Electrical Measurements402

7.5 Models and Simulation403

7.5.1 Numerical Solutions of the Diffusion Equation403

7.5.2 Modifications to Fick's Laws to Account for Electric Field Effects406

7.5.3 Modifications to Fick's Laws to Account for Concentration-Dependent Diffusion409

7.5.4 Segregation413

7.5.5 Interfacial Dopant Pileup415

7.5.6 Summary of the Macroscopic Diffusion Approach417

7.5.7 The Physical Basis for Diffusion at an Atomic Scale417

7.5.8 Oxidation-Enhanced or -Retarded Diffusion419

7.5.9 Dopant Diffusion Occurs by Both I and V422

7.5.10 Activation Energy for Self-Diffusion and Dopant Diffusion426

7.5.11 Dopant-Defect Interactions426

7.5.12 Chemical Equilibrium Formulation for Dopant-Defect Interactions432

7.5.13 Simplified Expression for Modeling434

7.5.14 Charge State Effects436

7.6 Limits and Future Trends in Technologies and Models439

7.6.1 Doping Methods440

7.6.2 Advanced Dopant Profile Modeling—Fully Kinetic Description of Dopant-Defect Interactions440

7.7 Summary of Key Ideas442

7.8 References443

7.9 Problems445

Chapter 8 Ion Implantation451

8.1 Introduction451

8.2 Historical Development and Basic Concepts451

8.2.1 Implants in Real Silicon—The Role of the Crystal Structure461

8.3 Manufacturing Methods and Equipment463

8.3.1 High-Energy Implants466

8.3.2 Ultralow Energy Implants468

8.3.3 Ion Beam Heating469

8.4 Measurement Methods469

8.5 Models and Simulations470

8.5.1 Nuclear Stopping471

8.5.2 Nonlocal Electronic Stopping473

8.5.3 Local Electronic Stopping474

8.5.4 Total Stopping Powers475

8.5.5 Damage Production476

8.5.6 Damage Annealing479

8.5.7 Solid-Phase Epitaxy482

8.5.8 Dopant Activation484

8.5.9 Transient-Enhanced Diffusion486

8.5.10 Atomic-Level Understanding of TED488

8.5.11 Effects on Devices497

8.6 Limits and Future Trends in Technologies and Models499

8.7 Summary of Key Ideas500

8.8 References500

8.9 Problems502

Chapter 9 Thin Film Deposition509

9.1 Introduction509

9.2 Historical Development and Basic Concepts511

9.2.1 Chemical Vapor Deposition (CVD)512

9.2.1.1 Atmospheric Pressure Chemical Vapor Deposition (APCVD)513

9.2.1.2 Low-Pressure Chemical Vapor Deposition (LPCVD)525

9.2.1.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD)527

9.2.1.4 High-Density Plasma Chemical Vapor Deposition (HDPCVD)530

9.2.2 Physical Vapor Deposition (PVD)530

9.2.2.1 Evaporation531

9.2.2.2 Sputter Deposition539

9.3 Manufacturing Methods554

9.3.1 Epitaxial Silicon Deposition556

9.3.2 Polycrystalline Silicon Deposition558

9.3.3 Silicon Nitride Deposition561

9.3.4 Silicon Dioxide Deposition563

9.3.5 Al Deposition565

9.3.6 Ti and Ti-W Deposition566

9.3.7 W Deposition567

9.3.8 TiSi2 and WSi2 Deposition567

9.3.9 TiN Deposition568

9.3.10 Cu Deposition570

9.4 Measurement Methods572

9.5 Models and Simulation573

9.5.1 Models for Deposition Simulations573

9.5.1.1 Models in Physically Based Simulators Such as SPEEDIE574

9.5.1.2 Models for Different Types of Deposition Systems582

9.5.1.3 Comparing CVD and PVD and Typical Parameter Values587

9.5.2 Simulations of Deposition Using a Physically Based Simulator, SPEEDIE590

9.5.3 Other Deposition Simulations598

9.6 Limits and Future Trends in Technologies and Models601

9.7 Summary of Key Ideas602

9.8 References603

9.9 Problems605

Chapter 10 Etching609

10.1 Introduction609

10.2 Historical Development and Basic Concepts612

10.2.1 Wet Etching612

10.2.2 Plasma Etching619

10.2.2.1 Plasma Etching Mechanisms621

10.2.2.2 Types of Plasma Etch Systems628

10.2.2.3 Summary of Plasma Systems and Mechanisms636

10.3 Manufacturing Methods637

10.3.1 Plasma Etching Conditions and Issues638

10.3.2 Plasma Etch Methods for Various Films643

10.3.2.1 Plasma Etching Silicon Dioxide644

10.3.2.2 Plasma Etching Polysilicon647

10.3.2.3 Plasma Etching Aluminum649

10.4 Measurement Methods650

10.5 Models and Simulation653

10.5.1 Models for Etching Simulation653

10.5.2 Etching Models—Linear Etch Model656

10.5.3 Etching Models—Saturation/Adsorption Model for Ion-Enhanced Etching663

10.5.4 Etching Models—More Advanced Models669

10.5.5 Other Etching Simulations671

10.6 Limits and Future Trends in Technologies and Models675

10.7 Summary of Key Ideas676

10.8 References677

10.9 Problems679

Chapter 11 Back-End Technology681

11.1 Introduction681

11.2 Historical Development and Basic Concepts687

11.2.1 Contacts688

11.2.2 Interconnects and Vias695

11.2.3 Dielectrics707

11.3 Manufacturing Methods and Equipment715

11.3.1 Silicided Gates and Source/Drain Regions716

11.3.2 First-level Dielectric Processing718

11.3.3 Contact Formation719

11.3.4 Global Interconnects721

11.3.5 IMD Deposition and Planarization723

11.3.6 Via Formation724

11.3.7 Final Steps725

11.4 Measurement Methods725

11.4.1 Morphological Measurements726

11.4.2 Electrical Measurements726

11.4.3 Chemical and Structural Measurements732

11.4.4 Mechanical Measurements734

11.5 Models and Simulation737

11.5.1 Silicide Formation738

11.5.2 Chemical-Mechanical Polishing744

11.5.3 Reflow746

11.5.4 Grain Growth753

11.5.5 Diffusion in Polycrystalline Materials762

11.5.6 Electromigration765

11.6 Limits and Future Trends in Technologies and Models776

11.7 Summary of Key Ideas780

11.8 References781

11.9 Problems784

Appendices787

A.l Standard Prefixes787

A.2 Useful Conversions787

A.3 Physical Constants788

A.4 Physical Properties of Silicon788

A.5 Properties of Insulators Used in Silicon Technology789

A.6 Color Chart for Deposited Si3N4 Films Observed Perpendicularly under Daylight Fluorescent Lighting789

A.7 Color Chart for Thermally Grown SiO2 Films Observed Perpendicularly under Daylight Fluorescent Lighting790

A.8 Irwin Curves791

A.9 Error Function793

A.10 List of Important Symbols797

A.11 List of Common Acronyms798

A.12 Tables in Text801

A.13 Answers to Selected Problems802

Index805

《SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELING》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。