《ADVANCED CALCULUS NEW EDITION》
作者 | 编者 |
---|---|
出版 | 未查询到或未知 |
参考页数 | 397 |
出版时间 | 没有确切时间的资料 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 811996428(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER Ⅰ.PRELIMINARY1
1.Functions1
2.Continuity2
3.The derivative5
4.Composite functions7
5.Rolle’s theorem7
6.Theorem of the mean8
7.Taylor’s series with a remainder10
8.The form 0/015
9.The form ∞/∞16
10.Other indeterminate forms18
11.Infinitesimals19
12.Fundamental theorems on infinitesimals22
13.Some geometric theorems involving infinitesimals23
14.The first differential28
15.Higher differentials29
16.Change of variable32
CHAPTER Ⅱ.POWER SERIES38
17.Definitions38
18.Comparison test for convergence40
19.The ratio test for convergence41
20.Region of convergence42
21.Uniform convergence45
22.Function defined by a power series45
23.Integral and derivative of a power series46
24.Taylor’s series48
25.Operations with two power series51
26.The exponential and trigonometric functions53
27.Hyperbolic functions55
28.Dominant functions57
29.Conditionally convergent series58
CHAPTER Ⅲ.PARTIAL DIFFERENTIATION65
30.Functions of two or more variables65
31.Partial derivatives66
32.Order of differentiation68
33.Differentiation of composite functions69
34.Euler’s theorem on homogeneous functions73
35.Directional derivative74
36.The first differential78
37.Higher differentials84
38.Taylor’s series85
CHAPTER Ⅳ.IMPLICIT FUNCTIONS91
39.One equation,two variables91
40.One equation,more than two variables93
41.Two equations,four variables95
42.Three equations,six variables97
43.The general case98
44.Jacobians99
CHAPTER Ⅴ.APPLICATIONS TO GEOMETRY106
45.Element of arc106
46.Straight line108
47.Surfaces109
48.Planes110
49.Behavior of a surface near a point112
50.Maxima and minima116
51.Curves118
52.Curvature and torsion121
53.Curvilinear coordinates124
CHAPTER Ⅵ.THE DEFINITE INTEGRAL134
54.Definition134
55.Existence proof135
56.Properties of definite integrals137
57.Evaluation of a definite integral138
58.Simpson’s rule139
59.Change of variables140
60.Differentiation of a definite integral141
61.Integration under the integral sign145
62.Infinite limit146
63.Differentiation and integratron of an integral with an infinite limit148
64.Infinite integrand151
65.Certain definite integrals153
66.Multiple integrals156
CHAPTER Ⅶ.THE GAMMA AND BETA FUNCTIONS164
67.The Gamma function164
68.The Beta function166
69.Dirichlet’s integrals167
70.Special relations169
CHAPTER Ⅷ.LINE,SURFACE,AND SPACE INTEGRALS174
71.Line integrals174
72.Plane area as a line integral177
73.Green’s theorem in the plane181
74.Dependence upon the path of integration183
75.Exact differentials185
76.Area of a curved surface187
77.Surface integrals190
78.Green’s theorem in space192
79.Other forms of Green’s theorem195
80.Stokes’s theorem197
CHAPTER Ⅸ.VECTOR NOTATION203
81.Vectors203
82.The scalar product204
83.The vector product206
84.Curves208
85.Areas209
86.The gradient210
87.The divergence211
88.The curl212
CHAPTER Ⅹ.DIFFERENTIAL EQUATIONS OF THE FIRST ORDER216
89.Introduction216
90.Existence proof217
91.Equations of the first degree219
92.Equations not of the first degree225
93.Envelope of a family of plane curves229
94.Envelope as locus of limit points231
95.Singular solutions232
96.Evolute and involute233
97.Orthogonal trajectories of plane curves236
98.Differential equation of the first order in three variables237
99.Simultaneous equations in three variables243
100.Existence proof246
CHAPTER Ⅺ.DIFFERENTIAL EQUATIONS OF HIGHER ORDER252
101.Existence proof252
102.The linear differential equation253
103.Method of variation of constants255
104.The linear differential equation with constant coefficients257
105.The complementary function259
106.The particular integral260
107.Equations reducible to linear equations with constant coefficients262
108.Simultaneous linear differential equations with constant coefficients263
109.Equations of the second order264
110.Legendre’s equation268
CHAPTER Ⅻ.BESSEL FUNCTIONS275
111.Bessel’s differential equation275
112.Bessel functions of integral order276
113.Roots of Bessel functions of integral order279
114.Bessel functions of integral order as definite integrals280
115.The function In(x)283
116.The Bessel function of fractional order284
117.Bessel functions of the second kind285
CHAPTER ⅩⅢ.PARTIAL ????????? EQUATIONS291
118.Introduction291
119.Special forms of partial differential eq?ations291
120.The linear partial differential equation of the ???292
121.The Fourier series295
122.The Fourier series with sines or cosines only299
123.Laplace’sequation in two variables301
124.Application to flow of heat303
125.The Laplace equation in three variables306
126.Application to potential308
127.Harmonic functions310
CHAPTER ⅩⅣ.CALCULUS OF VARIATIONS317
128.The simplest case317
129.Solution by differentials320
130.Variable limits323
131.Constrained variation324
132.Any number of variables326
133.Hamilton’s principle; Lagrange’s328
CHAPTER ⅩⅤ.FUNCTI????? A COMPLEX VARIABLE332
134.Complex numbers332
135.Graphical representation ????????orm333
136.Powers and roots335
137.The square root337
138.Exponential and trig339
139.The hyperbolic functions341
140.The logarithmic function342
141.The inverse hyperbolic and trigonometric functions343
142.Functions of a complex variable in general344
143.Conjugate functions347
144.Conformal representation348
145.Integral of a complex function351
146.Cauchy’s theorem352
147.Taylor’s series353
148.Poles and residues355
149.Application to real integrals356
150.Application to Bessel functions360
CHAPTER ⅩⅥ.ELLIPTIC INTEGRALS365
151.Introduction365
152.The functions sn u,cn u,dn u367
153.Application to the pendulum369
154.Formulas of differentiation and series expansion371
155.Addition formulas372
156.The periods373
157.Limiting cases375
158.Elliptic integrals in the complex plane376
159.Elliptic integrals of the second kind and of the third kind379
160.The function p(u)381
161.Applications382
ANSWERS387
INDEX395
《ADVANCED CALCULUS NEW EDITION》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- Advanced calculus Third Edition
- 1984 Addison-Wesley
-
- Advanced calculus for users
- 1989 Elsevier Science Pub.Co.distributor
-
- Advanced calculus for applications
- 1962 Prentice-Hall
-
- Advanced calculus with applications
- 1982 Macmillan : Collier Macmillan
-
- Advanced calculus
- 1968 MassAddisonWesley Pub. Co.
-
- Advanced calculus
- 1983 McGraw-Hill
-
- ADVANCED CALCULUS THIRD EDITION
- 1978 MCGRAW-HILL
-
- advanced calculus
- 1955 ginn and company
-
- ADVANCED CALCULUS
- 1912 GINN AND COMPANY
-
- ADVANCED CALCULUS
- 1938 THE MACMILLAN COMPANY
-
- Advanced Calculus for Applications (2nd Edition)
- 1976 Prentice Hall
-
- Advanced mathematics a preparation for calculus Second Edition
- 1978 Harcourt Brace Jovanovich
-
- Advanced calculus for engineers
- 1949 Prentice-Hall
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD