《TWO-PHASE FLOW AND HEAT TRANSFER》求取 ⇩

1.INTRODUCTION:G.L.SHIRES1

1.0.Chapter objectives1

1.1.Two-phase flow1

1.2.Nomenclature4

1.3.The need to study two-phase flow7

1.4.The information required9

1.5.Guide to the chapters10

1.5.1.Two-phase flow11

1.5.2.Two-phase heat transfer13

1.5.3.Hydrodynamic instability16

1.5.4.Condensation17

1.5.5.Loss-of-coolant accidents17

2.FLOW PATTERNS:G.F.HEWITT18

2.0.Chapter objectives18

2.1.The definition of flow regimes18

2.2.Delineation of flow patterns22

2.3.Flow-pattern maps24

2.4.Mechanistic approach to flow pattern delineation.27

2.5.Phase change and phase equilibrium35

2.6.Flow and heat-transfer regimes in evaporating and condensing systems36

3.ONE-DIMENSIONAL FLOW:D.BUTTERWORTH40

3.0.Chapterobjectives40

3.1.Introduction40

3.2.Continuity relationship41

3.3.Single phase momentum and energy balances44

3.4.Two-phase energy and momentum balances46

3.4.1.Momentum equation46

3.4.2.Energy equation48

3.4.3.Homogeneous equation49

3.4.4.Relationship between the momentum and energy equations49

3.5.Introduction to critical flow51

3.6.Integrated form of the momentum equation54

4.EMPIRICAL METHODS FOR PRESSURE DROP:D.BUTTERWORTH58

4.0.Chapter objectives58

4.1.Introduction58

4.2.Correlating parameters61

4.3.Homogeneous flow66

4.4.Separated flow68

4.4.1.Separate cylinders model68

4.4.2Lockhart-Martinelli correlation70

4.5.Mixed-flow models72

4.5.1.Baroczy correlation72

4.5.2.Chisholm and Sutherland correlation75

4.6.Void-fraction correlations79

4.7.Relationship between void fraction and frictional pressure gradient82

4.8.Integrated forms of the momentum equation83

4.9.Pressure drop in fittings86

4.9.1.Abrupt enlargement in flow area86

4.9.2.Abrupt reduction in flow area88

4.9.3.Bends89

5.VERTICAL BUBBLE AND SLUG FLOW:G.F.HEWITT91

5.0.Chapter objectives91

5.1.One-dimensional two-phase flow91

5.2.Unsteady one-dimensional flow96

5.3.The Bankoff variable-density model97

5.4.Generalized model for slip:Zuber and Findlay analysis99

5.5.Techniques for local void measurement in bubble flow101

5.6.Vertical slug flow103

6.VERTICAL ANNULAR FIoW:G.F.HEWITT107

6.0.Chapter objectives107

6.1.Parameters in annular flow107

6.2.The’triangular relationship’108

6.3.Interfacial waves in annular flow113

6.4.Measurement of liquid-entrained fraction119

6.5.Droplet mass transfer122

6.6.Liquid entrainment125

6.7.Application of the closed-form solution for annular flow126

7.POOL BOILING:D.B.R.KENNING128

7.0.Chapter objectives128

7.1.Introduction and definitions128

7.2.The boiling curve130

7.3.Effect of surface conditions133

7.4.Effect of geometry134

7.5.Effect of pressure134

7.6.Effect of time-varying surface temperature137

7.7.Effect of non-uniform surface temperature137

7.8.Effect of dissolved gas137

7.9.Low-liquid regimes137

7.10.Stable film boiling139

7.11.Critical heat flux141

7.12.Nucleate boiling143

7.12.1.Bubble nucleation143

7.12.2.Bubble growth148

7.12.3Heat-transfer models150

7.13 Conclusion152

8.NUCLEATE BOILING IN FORCED CONVECTION:D.B.R.KENNING153

8.0.Chapter objectives153

8.1.Introduction153

8.2.Bubble nucleation155

8.3.Heat-transfer correlations158

8.4.Void fraction in subcooled boiling161

8.5.Pressure drop in subcooled boiling167

8.6.Conclusion169

9.CONVECTIVE HEAT TRANSFER IN ANNULAR FLOW:R.A.W.SHOCK170

9.0.Chapter objectives170

9.1.Introduction to annular-flow heat transfer170

9.2.Laminar-flow solutions172

9.2.1.The energy equation172

9.2.2.Case 1.174

9.2.3.Case 2.176

9.2.4.Case 3.176

9.2.5.Case 4.178

9.3.Turbulent-flow solutions178

9.4.Heat transfer in two-component systems189

10.ESTIMATION METHODS FOR FORCED-CONVECTIVE BOILING:R.A.W.SHOCK200

10.0.Chapter objectives200

10.1.Convective correlations and relation to theories200

10.2.Superposition of nucleate boiling in saturated and subtooled boiling204

10.2.1.Introduction204

10.2.2.Partial subcooled boiling205

10.2.3.Saturated convective boiling213

11.BOILING AND FLOW IN HORIZONTAL TUBES:D.BUTTERWORTH and J.M.ROBERTSON223

11.0.Chapter objectives223

11.1.Flow-pattern map for horizontal flow223

11.2.Stratified flow226

11.2.1.Useful geometric relationships226

11.2.2.Laminar flow in both phases227

11.2.3.Laminar liquid-turbulent gas229

11.2.4.Turbulent flow of both phases232

11.3.Stratified to slug transition.232

11.4.Slug flow234

11.5.Bubble flow234

11.6.Annular flow235

11.6.1.Illustration of horizontal annular flow235

11.6.2.Suggested mechanisms for transporting liquid to the top of the tube236

11.7.Heat-transfer coefficients242

11.8.Burnout in horizontal tubes243

11.8.1.Occurrence of burnout and its effect in practice243

11.8.2.Observations of burnout in horizontal tubes244

11.8.3.Tentative interpretations of burnout data249

12.INTRODUCTION TO BURNOUT:G.L.SHIRES252

12.0.Chapter objectives252

12.1.A description of burnout252

12.2.History255

12.3.Factors influencing burnout255

12.4.Evaluation of burnout258

12.5.Basic burnout measurements in vertical straight tubes260

12.5.1.Uniform heat flux260

12.5.2.Straight tube,non-uniform heat flux262

12.6.Modelling of burnout using Freon264

12.7.Burnout in complex geometries267

12.7.1.Burnout evaluation of reactor fuel268

12.7.2.Burnout evaluation of boiler tubes273

12.8.Summary278

13.MECHANISMS OF BURNOUT:G.F.HEWITT279

13.0.Chapter objectives279

13.1.Definition of burnout279

13.2.Evaluation of the burnout mechanism280

13.3.The entrainment diagram and its applications284

13.4.Calculation of onset of burnout in annular flow291

14.PREDICTION OF BURNOUT:D.H.LEE295

14.0.Chapter objectives295

14.1.Trend of parameters295

14.1.1.Inlet subcooling296

14.1.2.Mass velocity297

14.1.3.Pressure298

14.1.4.Geometry300

14.1.5.Local quality301

14.2.Accuracy of burnout correlation305

14.3.Correlating parameters305

14.4.Burnout in tubes306

14.5.Burnout in tubes at high pressure309

14.6.Burnout in rectangular channels309

14.7.Burnout in annular channels311

14.8.Burnout in rod clusters313

14.8.1.Whole channel model for correlating rod-cluster burnout313

14.8.2.Subchannel models for correlating rod-cluster burnout316

14.9.Secondary effects influencing prediction of burnout319

14.9.1.Heat-flux profile319

14.9.2.Direction of flow320

14.10.Prediction of burnout margin321

15.FOULING IN BOILING-WATER SYSTEMS:R.V.MACBETH323

15.0.Chapter objectives323

15.1.Introduction323

15.2.Problems of experimenting with crud324

15.3.The nature of crud deposits326

15.4.The nature of boiling on a crudded surface329

15.5.Model of wick boiling in a magnetite crud deposit332

15.6.Effect of crud deposits on surface temperature335

15.7.Effect of crud deposits on burnout337

15.8.The effect of crud deposits on frictional pressure drop339

16.INTRODUCTION TO HYDRODYNAMIC INSTABILITY:N.A.BAILEY343

16.0.Chapter objectives343

16.1.Introduction343

16.2.The ‘Ledinegg’instability344

16.3.Oscillations due to compressible volumes348

16.4.Flow oscillations due to the growth of voids349

16.5.Acoustic effects351

16.6.Parallel-channel and natural-circulation loop instability352

16.7.Situations where instabilities arise353

16.8.The designer’s requirements354

16.9.Experimental methods to determine the onset of parallel-channel or natural-circulation-loop instability356

16.10.A review of some experimental investigations into the onset of hydrodynamic instability359

16.10.1.Natural-circulation-loop instability361

16.10.2.Parallel-channel instability364

16.11.Prorlems arising in the application of models and tests to designs371

16.12.The application of models and experimental tests to plant problems372

17.OSCILLATORY INSTABILITY:R.POTTER374

17.0.Chapter objectives374

17.1.Introduction374

17.2.General background to instabilities and noise amplification375

17.3.Outline of feedback analysis376

17.4.Example of an instability mode in boiling-water reactors380

17.5.Hydrodynamic instability382

17.6.Illustrative example385

17.7.Circuit geometry389

17.8.Other methods of analysis391

17.9.Concluding remarks393

18.INTRODUCTION TO CONDENSATION:D.BUTTERWORTH394

18.0.Chapter objectives394

18.1.Modes of condensation394

18.2.Resistances to heat transfer during condensation396

18.3.Homogeneous condensation399

18.3.1.Droplet equilibrium399

18.3.2.Nucleation400

18.4.Dropwise condensation403

18.5.Direct-contact condensation405

18.5.1.Spray condensers405

18.5.2.Pool condensers409

18.6.Interfacial resistance409

18.7.Gas-phase heat and mass transfer413

18.7.1.Mass transfer413

18.7.2.Effect of mass transfer on heat transfer415

18.7.3.Condensing curves418

18.7.4.Single vapour in the presence of incondensable gas420

18.7.5.Multicomponent condensation423

18.8.Effect of condensation on interfacial shear stress425

19.FILMWISE CONDENSATION:D.BUTTERWORTB426

19.0.Chapter objectives426

19.1.Condensation on a vertical surface426

19.1.1.Laminar film condensation-Nusselt solution426

19.1.2.Extension of the Nusselt analysis to include subcooling and non-linear temperature profile433

19.1.3.Inclusion of inertial effects438

19.1.4.Effect of vapour superheat440

19.1.5.Effect of waves441

19.1.6.Effect of turbulence443

19.2.Condensation on a horizontal tube447

19.2.1.Outside a single tube447

19.2.2.Condensation outside a bundle of tubes448

19.2.3.Inside a horizontal tube451

19.3.Condensation with high vapour shear453

19.3.1.Different tube orientations and vapour flow directions453

19.3.2.Horizontal tube with perpendicular vapour flow454

19.3.3.Flow in a tube455

19.4.Special surfaces for enhancing film condensation459

20.LOSS-OF-COOLANT ACCIDENTS:I.BRITTAIN463

20.0.Chapter objectives463

20.1.Introduction463

20.2.Fuel-pin behaviour465

20.3.The loss-of-coolant accident466

20.3.1.Blow-down phase468

20.3.2.Core heat-up phase468

20.3.3.Reflood phase468

20.4.Critical-flow model469

20.5.Hydrodynamics and heat transfer during blow-down471

20.5.1.Fuel-pin heat transfer471

20.5.2.Burnout correlations472

20.5.3.Pump models473

20.5.4.Steam drum behaviour473

20.6.The s?agnation problem474

20.7.Emergency core-cooling systems476

20.8.Summary477

REFERENCES479

INDEX511

《TWO-PHASE FLOW AND HEAT TRANSFER》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由D.BUTTERWORTH AND G.F.HEWITT OXFORD UNIVERSITY PRESS 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。