《THEORY OF ORDINARY DIFFERENTIAL EQUATIONS》
作者 | EARL A·CODDINGTON 编者 |
---|---|
出版 | MCGRAW HILL BOOK COMPANY INC |
参考页数 | 429 |
出版时间 | 没有确切时间的资料 目录预览 |
ISBN号 | 无 — 求助条款 |
PDF编号 | 811608418(仅供预览,未存储实际文件) |
求助格式 | 扫描PDF(若分多册发行,每次仅能受理1册) |

CHAPTER 1.EXISTENCE AND UNIQUENESS OF SOLUTIONS1
1.Existence of Solutions1
2.Uniqueness of Solutions8
3.The Method of Successive Approximations11
4.Continuation of Solutions13
5.Systems of Differential Equations15
6.The nth-order Equation21
7.Dependence of Solutions on Initial Conditions and Parameters22
8.Complex Systems32
Problems37
CHAPTER 2.EXISTENCE AND UNIQUENESS OF SOLUTIONS(continued)42
1.Extension of the Idea of a Solution,Maximum and Minimum Solutions42
2.Further Uniqueness Results48
3.Uniqueness and Successive Approximations53
4.Variation of Solutions with Respect to Initial Conditions and Parameters57
Problems60
CHAPTER 3.LINEAR DIFFERENTIAL EQUATIONS62
1.Preliminary Definitions and Notations62
2.Linear Homogeneous Systems67
3.Nonhomogeneous Linear Systems74
4.Linear Systems with Constant Coefficients75
5.Linear Systems with Periodic Coefficients78
6.Linear Differential Equations of Order n81
7.Linear Equations with Analytic Coefficients90
8.Asymptotic Behavior of the Solutions of Certain Linear Systems91
Problems97
CHAPTER 4.LINEAR SYSTEMS WITH ISOLATED SINGULARITIES:SINGULARITIES OF THE FIRST KIND108
1.Introduction108
2.Classification of Singularities111
3.Formal Solutions114
4.Structure of Fundamental Matrices118
5.The Equation of the nth Order122
6.Singularities at Infinity127
7.An Example:the Second-order Equation130
8.The Frobenius Method132
Problems135
CHAPTER 5.LINEAR SYSTEMS WITH ISOLATED SINGULARITIES:SINGULARITIES OF THE SECOND KIND138
1.Introduction138
2.Formal Solutions141
3.Asymptotic Series148
4.Existence of Solutions Which Have the Formal Solutions as Asymptotic Expansions—the Real Case151
5.The Asymptotic Nature of the Formal Solutions in the Complex Case161
6.The Case Where A? Has Multiple Characteristic Roots167
7.Irregular Singular Points of an nth-order Equation169
8.The Laplace Integral and Asymptotic Series170
Problems173
CHAPTER 6.ASYMPTOTIC BEHAVIOR OF LINEAR SYSTEMS CONTAINING A LARGE PARAMETER174
1.Introduction174
2.Formal Solutions175
3.Asymptotic Behavior of Solutions178
4.The Case of Equal Characteristic Roots182
5.The nth-order Equation182
Problems184
CHAPTER 7.SELF-ADJOINT EIGENVALUE PROBLEMS ON A FINITE INTERVAL186
1.Introduction186
2.Self-adjoint Eigenvalue Problems188
3.The Existence of Eigenvalues193
4.The Expansion and Completeness Theorems197
Problems201
CHAPTER 8.OSCILLATION AND COMPARISON THEOREMS FOR SECOND-ORDER LINEAR EQUATIONS AND APPLICATIONS208
1.Comparison Theorems208
2.Existence of Eigenvalues211
3.Periodic Boundary Conditions213
4.Stability Regions of Second-order Equations with Periodic Coefficients218
Problems220
CHAPTER 9.SINGULAR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER EQUATIONS222
1.Introduction222
2.The Limit-point and Limit-circle Cases225
3.The Completeness and Expansion Theorems in the Limit-point Case at Infinity231
4.The Limit-circle Case at Infinity242
5.Singular Behavior at Both Ends of an Interval246
Problems254
CHAPTER 10.SINGULAR SELF-ADJOINT BOUNDABY-VALUE PROBLEMS FOR nTH-ORDER EQUATIONS261
1.Introduction261
2.The Expansion Theorem and Parseval Equality262
3.The Inverse-tranaform Theorem and the Uniqueness of the Spectral Matrix265
4.Green's Function272
5.Representation of the Spectral Matrix by Green's Function278
Problems281
CHAPTER 11.ALGEBRAIC PROPRTIES OF LINEAR BOUNDARY-VALUE PROBLEMS ON A FINITE INTERVAL284
1.Introduction284
2.The Boundary-form Formula286
3.Homogeneous Boundary-value Problems and Adjoint Problems288
4.Nonhomogeneous Boundary-value Problems and Green's Function294
Problems297
CHAPTER 12.NON-SELF-ADJOINT BOUNDARY-VALUE PROBLEMS298
1.Introduction298
2.Green's Function and the Expansion Theorem for the Case Lx=-x″300
3.Green's Function and the Expansion Theorem for the Case Lx=-x″+q(t)x305
4.The nth-order Case308
5.The Form of the Expansion310
Problems312
CHAPTER 13.ASYMPTOTIC BEHAVIOR OF NONLINEAR SYSTEMS:STABILITY314
1.Asymptotic Stability314
2.First Variation:Orbital Stability321
3.Asymptotic Behavior of a System327
4.Conditional Stability329
5.Behavior of Solutions off the Stable Manifold340
Problems344
CHAPTER 14.PERTURBATIOM OF SYSTEMS HAVING A PERIODIC SOLUTION348
1.Nonautonomous Systems348
2.Autonomous Systems352
3.Perturbation of a Linear System with a Periodic Solution in the Non-autonomous Case356
4.Perturbation of an Autonomous System with a Vanishing Jacobian364
Problems370
CHAPTER 15.PERTURBATION THEORY OF TWO-DIMENSIONAL REAL AUTONO-MOUS SYSTEMS371
1.Two-dimensional Linear Systems371
2.Perturbations of Two-dimensional Linear Systems375
3.Proper Nodes and Proper Spiral Points377
4.Centers381
5.Improper Nodes384
6.Saddle Points387
Problems388
CHAPTER 16.THE POINCARE-BENDIXSON THEORY OF TWO-DIMENSIONAL AUTONOMOUS SYSTEMS389
1.Limit Sets of an Orbit389
2.The Poincare-Bendixson Theorem391
3.Limit Sets with Critical Points394
4.The Index of an Isolated Critical Point398
5.The Index of Simple Critical Point400
Problems402
CHAPTER 17.DIFFERENTIAL EQUATIONS ON A TORUS404
1.Introduction404
2.The Rotation Number405
3.The Cluster Set408
4.The Ergodic Case409
5.Characterization of Solutions in the Ergodic Case413
6.A System of Two Equations415
REFERENCES417
INDEX423
《THEORY OF ORDINARY DIFFERENTIAL EQUATIONS》由于是年代较久的资料都绝版了,几乎不可能购买到实物。如果大家为了学习确实需要,可向博主求助其电子版PDF文件(由EARL A·CODDINGTON MCGRAW HILL BOOK COMPANY INC 出版的版本) 。对合法合规的求助,我会当即受理并将下载地址发送给你。
高度相关资料
-
- NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
- 1977 OXFORD UNIVERSITY PRESS
-
- Ordinary Differential Equations Theory And Applications
- 1980 Affiliated East West Press Pvt Ltd.
-
- ORDINARY DIFFERENTIAL EQUATIONS
- 1969年第2版 JOHN WILEY & SONS NEW YORK
-
- ORDINARY DIFFERENTIAL EQUATIONS
- 1969 JOHN WILEY & SONS NEW YORK
-
- SONATE FUR VIOLONCELLO SOLO=仁契:大提琴奏鸣曲
- 7 COLLECTION LITOLFF
-
- Numerical solution of ordinary differential equations
- 1971 Academic Press
-
- Nonlinear ordinary differential equations
- 1977 Clarendon Press
-
- Ordinary differential equations
- 1971 Holden-Day
-
- Ordinary differential equations
- 1926 Dover Publications
-
- Ordinary differential equations
- 1978 Elsevier North-Holland
-
- Ordinary differential equations and stability theory
- 1980 Tata McGraw-Hill
-
- ORDINARY DIFFERENTIAL EQUATIONS
- 1973 THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
-
- Geometrical Methods in the Theory of Ordinary Differential Equations
- 1983 SPRINGER-VERLAG NEW YORK HEIDELBERG BERLIN
-
- Ordinary differential equations
- 1998 World Pub.Corp.
-
- Ordinary differential equations
- 1968 Aisdell Pub.Co.
提示:百度云已更名为百度网盘(百度盘),天翼云盘、微盘下载地址……暂未提供。➥ PDF文字可复制化或转WORD