《表2 不同充电电压下单体开路电压测试数据》

《表2 不同充电电压下单体开路电压测试数据》   提示:宽带有限、当前游客访问压缩模式
本系列图表出处文件名:随高清版一同展现
《大容量动力型超级电容器存储性能》


  1. 获取 高清版本忘记账户?点击这里登录
  1. 下载图表忘记账户?点击这里登录

图3为不同充电电压下单体开路电压测试曲线(25℃)。从图中可以看出,在不同充电电压下的单体端电压均随静置时间的对数而线性减少,也就是说,单体自放电过程中的电压衰减可以用指数数学模型计算。如表2所示不同充电电压下单体开路电压测试数据可以看出,静置1 d,充电截止电压为2.85 V、2.7 V、2.5 V、2.1 V、1.7 V和1.3 V的单体端电压依次为2.42 V、2.35 V、2.19 V、1.81 V、1.53 V和1.17 V;静置150 d,单体端电压依次为1.76 V、1.71 V、1.61 V、1.42 V、1.13 V和0.90 V。相同静置时间,初始充电截止电压越高,单体的端电压越高,其中充电电压为2.85 V的单体端电压最高。主要是由于充电电压高,单体充满电状态需要吸附更多的电解质离子,在电极/电解液界面累积更多的电解质离子。当去掉外部电源时,没有电场的束缚,从电极表面脱附的电解质离子数目越多,电压降低得越多,电压保持能力越低[11]。目前商业化超级电容产品的SD在2.7 V测定。因此,可通过适当降低单体充电截止电压提高单体电压的保持能力。